Skip to main content
Log in

A theory of medical decision making under uncertainty

  • Published:
Journal of Risk and Uncertainty Aims and scope Submit manuscript

Abstract

This paper presents an axiomatic model of medical decision making and discusses its potential applications. The medical decision problems envisioned concern the choice of a medical treatment following a diagnosis in situations in which data allow construction of an empirical distribution over the potential outcomes associated with the alternative treatments. In its descriptive interpretation, the model is an hypothesis about the patient’s choice behavior. The theory also aims to aid physicians in recommending treatments in a coherent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A recent study by Sommers et al. (2007) underscores the importance of patients’ preferences for the determination of the optimal treatment (defined as the expected QALY). See further discussion in the concluding section.

  2. Outcomes represent states of health, and the utility functions in this model are state-dependent functions of the patient’s wealth. This is an important aspect of this model, which is missing from that of Sommers et al. (2007). Empirical evidence suggests that there are significant variations both in the level and marginal utility of wealth across states of health (see Viscusi and Evans 1990).

  3. In view of our definition of medical decision problems, the interpretation of θ is the doctor’s diagnosis rather than the patient’s true state of health.

  4. The specifications of the actions do not include the financial dimensions of the medical procedure, which is handled separately.

  5. The uniqueness part of the theorem in Karni and Safra (2000) states that \( U_{a}\left( \cdot ,\omega \right) \) are unique up to the following transformations: \(\beta U_{a}\left( \cdot ,\omega \right) +\gamma \left( \omega \right) ,\) β > 0 and \(\sum_{\omega \in \Omega }\gamma \left( \omega \right) =\gamma .\) This is a mistake. The uniqueness requires that \( \gamma \left( \omega \right) =\gamma \) for all ω ∈ Ω, hence the uniformity.

  6. Abdellaoui et al. (2007) introduced and used a special, one-parameter, variation of the expo-power family. Holt and Laury (2002) used the expo-power family of Saha (1993) to study the nature of risk aversion and its dependence on the stakes.

  7. Sloan et al. (1998) report higher willingness to pay to reduce the risk of multiple sclerosis (MS), among persons suffering from MS than among persons without MS. By contrast, persons with MS are more resistant to undergoing an operation involving a risk of dying that, if successful will cure them from the disease, implying that they place smaller disutility on having the disease than healthy persons. This tendency is consistent with the phenomenon, reported in Deutsch (1960) and Andrews and Withey (1976), of observers who see actors as more distressed by their misfortune than the actors see themselves.

  8. The approach is described in Sommers and Zeckhauser (2008).

References

  • Abdellaoui, M., Barrios, C., & Wakker, P. P. (2007) Reconciling introspective utility with revealed preference: Experimental arguments based on prospect theory. Journal of Econometrics, 138, 356–378.

    Article  Google Scholar 

  • Andrews, F. M., & Withey, S. B. (1976) Social indicators of well-being. New York: Plenum.

    Google Scholar 

  • Arrow, K. J. (1965) Aspects of the theory of risk-bearing. Helsinki: Yrjö Hahnsson Foundation.

    Google Scholar 

  • Becker, G. M., DeGroot, M. H., & Marschak, J. (1964) Measuring utility by a single response sequential method. Behavioral Science, 9, 226–232.

    Article  Google Scholar 

  • de Finetti, B. (1952) Sulla preferibilita. Giornale degli Economisti e Annali di Economia, 11, 685–709.

    Google Scholar 

  • Deutsch, M. (1960) The pathetic fallacy: An observer error in social perception. Journal of Personality, 28, 317–332.

    Article  Google Scholar 

  • Holt, C. A., & Laury, S. K. (2002) Risk aversion and incentive effects. American Economic Review, 92, 1644–1655.

    Article  Google Scholar 

  • Karni, E. (2006) Subjective expected utility theory without states of the world. Journal of Mathematical Economics, 42, 325–342.

    Article  Google Scholar 

  • Karni, E., & Safra, Z. (2000) An extension of a theorem of von Neumann and Morgenstern with application to social choice theory. Journal of Mathematical Economics, 34, 315–327.

    Article  Google Scholar 

  • Merton, R. C. (1971) Optimum consumption and portfolio rules in continuous-time model. Journal of Economic Theroy, 3, 373–413.

    Article  Google Scholar 

  • Pratt, J. W. (1964) Risk aversion in the small and in the large. Econometrica, 32, 122–136.

    Article  Google Scholar 

  • Saha, A. (1993) Expo-power utility: A flexible form for absolute and relative risk aversion. American Journal of Agricultural Economics, 75, 905–913.

    Article  Google Scholar 

  • Sloan, F. A., Viscusi, W. K., Chesson, H. W., Conover, C. J., & Whetten-Goldstein, K. (1998) Alternative approaches to valuing intangible health losses: The evidence from multiple sclerosis. Journal of Health Economics, 17, 475–497.

    Article  Google Scholar 

  • Sommers, B. D., Beard, C. J., Dahl, D., D’Amico, A. V., Kaplan, I. P., Richie J., et al. (2007) Decision analysis using individual patient preferences to determine optimal treatment for localized prostate cancer. Cancer, 110, 2210–2217.

    Article  Google Scholar 

  • Sommers, B. D., & Zeckhauser R. J. (2008) Probabilities and preferences: What economics can teach doctors and patients making difficult treatment decisions. Urologic Oncology, 26, 669–673.

    Google Scholar 

  • Viscusi, W. K., & Evans W. N. (1990) Utility functions that depend on health status: Estimates and economic implications. American Economic Review, 80, 353–374.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edi Karni.

Additional information

I benefited from comments of Ani Guerdjikova, Moshe Leshno, Marzena Rostek, Marie-Louise Viero, Kip Viscusi, Peter Wakker and an anonymous referee.

Appendix

Appendix

Proof of Theorem 2

\((a)\Rightarrow (b).\) By Theorem 1, ≽  a is represented by

$$ V_{a}\left( p,f\right) =\sum_{\omega \in \Omega }p\left( \omega \right) U_{a}(f\left( \omega \right) ,\omega ). \label{equ1} $$
(14)

Action-independent risk attitudes, (A.6), and the uniqueness part of Theorem 1 imply that for all a, a′ ∈ A, \(U_{a}\left( \cdot ,\omega \right) \) and \(U_{a^{\prime }}\left( \cdot ,\omega \right) \) are linear transformations of one another. Moreover, the representation (14) and (A.7) imply that, for all a,a′ ∈ A that are elementarily linked at f, and \(\bar{p},\underline{p},\bar{p}^{\prime },\underline{p}^{\prime }\in P\) satisfying \(\left( \bar{p},f\right) \succ _{a}\left( \underline{p} ,f\right) \) such that \(\left( a,\bar{p},f\right) \sim \left( a^{\prime }, \bar{p}^{\prime },f\right) \) and \(\left( a,\underline{p},f\right) \sim \left( a^{\prime },\underline{p}^{\prime },f\right),\)

$$ V_{a}\left( \alpha \bar{p}+\left( 1-\alpha \right) \underline{p},f\right) =V_{a^{\prime }}\left( \alpha \bar{p}^{\prime }+\left( 1-\alpha \right) \underline{p}^{\prime },f\right) \label{equ1a} $$
(15)

for all \(\alpha \in \left( 0,1\right) .\)

Fix a 0 and let \(U\left( \cdot ,\omega \right) :=U_{a^{0}}\left( \cdot ,\omega \right) \ \)for all ω ∈ Ω. Then

$$ U_{a}\left( f\left( \omega \right) ,\omega \right) =\lambda (a)U\left( f\left( \omega \right) ,\omega \right) +v\left( a\right) ,\text{ for all } a\in A,f\in F\text{ and }\omega \in \Omega . \label{equ2} $$
(16)

Let a 0,a ∈ A be elementarily linked at f, and define \(\lambda \left( a\right) \) and \(v\left( a\right) \) by the unique solution to the following equations:

$$ \lambda \left( a\right) \sum_{\omega \in \Omega }\bar{p}\left( \omega \right) U(f\left( \omega \right) ,\omega )+v\left( a\right) =\sum_{\omega \in \Omega }\bar{p}^{\prime }\left( \omega \right) U(f\left( \omega \right) ,\omega ) \label{equ3a} $$
(17)

and

$$ \lambda \left( a\right) \sum_{\omega \in \Omega }\underline{p}\left( \omega \right) U(f\left( \omega \right) ,\omega )+v\left( a\right) =\sum_{\omega \in \Omega }\underline{p}^{\prime }\left( \omega \right) U(f\left( \omega \right) ,\omega ). \label{equ3b} $$
(18)

Let a and a′ be elementarily linked, and define \(\lambda \left( a^{\prime }\right) \) and \(v\left( a^{\prime }\right) \) by the unique solution to the equations

$$ \lambda \left( a^{\prime }\right) \sum_{\omega \in \Omega }\bar{p}^{\prime }\left( \omega \right) U(f^{\prime }\left( \omega \right) ,\omega )+v\left( a^{\prime }\right) =\lambda \left( a\right) \sum_{\omega \in \Omega }\bar{p} \left( \omega \right) U(f^{\prime }\left( \omega \right) ,\omega )+v\left( a\right) \label{equ4a} $$
(19)

and

$$ \lambda \left( a^{\prime }\right) \sum_{\omega \in \Omega }\underline{p} ^{\prime }\left( \omega \right) U(f^{\prime }\left( \omega \right) ,\omega )+v\left( a^{\prime }\right) =\lambda \left( a\right) \sum_{\omega \in \Omega }\underline{p}\left( \omega \right) U(f^{\prime }\left( \omega \right) ,\omega )+v\left( a\right) . \label{equ4b} $$
(20)

Because A is finite and linked, repeating this process, it is possible to solve \(\left( \lambda \left( a\right) ,v\left( a\right) \right) \) for all a ∈ A.

For every a ∈ A, define:

$$ B_{a}=\left\{\left( p,f\right) \in P\times F\mid \left( p,f\right) \succeq _{a}\left( p^{\prime },f^{\prime }\right) \text{ }\forall \left( p^{\prime },f^{\prime }\right) \in P\times F\right\} $$

and

$$ W_{a}=\left\{\left( p,f\right) \in P\times F\mid \left( p^{\prime },f^{\prime }\right) \succeq _{a}\left( p,f\right) \text{ }\forall \left( p^{\prime },f^{\prime }\right) \in P\times F\right\}. $$

By the compactness of P×F and continuity of ≽  a , the sets B a and W a are closed and nonempty. Moreover, since \(\left( p,f\right) =\left( \Sigma _{\omega \in \Omega }p\left( \omega \right) e^{\omega },f\right) ,\) constraint independence and transitivity imply that there are ω,ω′ ∈ Ω such that \(\left( e^{\omega },f\right) \in B_{a}\) and \(\left( e^{\omega ^{\prime }},f^{\prime }\right) \in W_{a}.\) Define

$$ B_{a}^{0}=\{\left( p,f\right) \in B_{a}\mid p=e^{\omega }\text{ for some } \omega \in \Omega \} $$

and

$$ W_{a}^{0}=\{\left( p,f\right) \in W_{a}\mid p=e^{\omega }\text{ for some } \omega \in \Omega \}. $$

By coordinate essentiality, for all a ∈ A, \(B_{a}^{0}\cap W_{a}^{0}\) is empty.

By Theorem 1 \(V_{a}\left( e^{\omega },f\right) =U_{a}\left( f\left( \omega \right) ,\omega \right) ,\) for all a ∈ A, and, by Eq. 16, \( U_{a}\left( f\left( \omega \right) ,\omega \right) =\lambda (a)U\left( f\left( \omega \right) ,\omega \right) +v\left( a\right) ,\) where λ(a) > 0. Similarly, \(V_{a}\left( e^{\omega ^{\prime }},f^{\prime }\right) =U_{a}\left( f^{\prime }\left( \omega ^{\prime }\right) ,\omega ^{\prime }\right) =\lambda (a)U\left( f^{\prime }\left( \omega ^{\prime }\right) ,\omega ^{\prime }\right) +v\left( a\right) .\) Consequently, \(\left( e^{\omega },f\right) \in B_{a}^{0}\) and \(\left( e^{\omega ^{\prime }},f^{\prime }\right) \in W_{a}^{0}\) if and only if \(\left( e^{\omega },f\right) \in B_{a^{\prime }}^{0}\) and \(\left( e^{\omega ^{\prime }},f^{\prime }\right) \in W_{a^{\prime }}^{0},\) for all a,a′ ∈ A. Given \(\left( e^{\omega },f\right) \in B_{a}^{0},\) rearrange the set A letting j > i if \(\left( a_{j},e^{\omega },f\right) \succ \left( a_{i},e^{\omega },f\right) .\) (If \(\left( a_{j},e^{\omega },f\right) \sim \left( a_{i},e^{\omega },f\right) ,\) then the order is arbitrary.) Hence A can be written as an n −tuple \(\left( a_{1},...,a_{n}\right) ,\) and a i and a i + 1 are elementarily linked, i = 1,...,n − 1.

Let f,f′ ∈ F and ω,ω′ ∈ Ω be such that \(\left( e^{\omega },f\right) \in B_{a}^{0}\) and \(\left( e^{\omega ^{\prime }},f^{\prime }\right) \in W_{a}^{0}\). Define \(\hat{f}=\left( f\left( \omega \right) ,\left( f^{\prime }\left( \omega ^{\prime }\right) ,f_{-\omega ^{\prime }}\right) _{-\omega }\right) .\) Because \(f\left( \omega \right) \) is the ω −th coordinate of both f and \(\hat{f},\) and \( f^{\prime }\left( \omega ^{\prime }\right) \) is the ω′ −th coordinate of both f′ and \(\hat{f},\) the certainty principle implies \(\left( e^{\omega },\hat{f}\right) \in B_{a}^{0}\) and \(\left( e^{\omega ^{\prime }},\hat{f}\right) \in W_{a}^{0}.\)

Let a and a′ be elementarily linked at f  ∗  ∈ F with \( \bar{p},\underline{p},\bar{p}^{\prime },\underline{p}^{\prime }\in P\) satisfying \(\left( \bar{p},f^{\ast }\right) \succ _{a}\big( \underline{p} ,f^{\ast }\big) \) such that \(\left( a,\bar{p},f^{\ast }\right) \sim \left( a^{\prime },\bar{p}^{\prime },f^{\ast }\right) \) and \(\big( a,\underline{p} ,f^{\ast }\big) \sim \big( a^{\prime },\underline{p}^{\prime },f^{\ast }\big).\) There are then \(\bar{\alpha}_{a},\underline{\alpha }_{a},\bar{ \alpha}_{a^{\prime }},\underline{\alpha }_{a^{\prime }}\in \left[ 0,1\right] \) such that \(\left( \bar{p},f^{\ast }\right) \sim _{a}\left(\left( \bar{\alpha} _{a}e^{\omega }+\left( 1-\bar{\alpha}_{a}\right) e^{\omega ^{\prime }}\right) ,\hat{f}\right)\), \(\big( \underline{p},f^{\ast }\big) \sim _{a}\left(\left( \underline{\alpha }_{a}e^{\omega }+\left( 1-\underline{\alpha } _{a}\right) e^{\omega ^{\prime }}\right) ,\hat{f}\right),\) \(\left( \bar{p}^{\prime },f^{\ast }\right) \sim _{a^{^{\prime }}}\left(\left( \bar{\alpha}_{a^{\prime }}e^{\omega }+\left( 1-\bar{\alpha}_{a^{\prime }}\right) e^{\omega ^{\prime }}\right) ,\hat{f}\right),\) and \(\big( \underline{p}^{\prime },f^{\ast }\big) \sim _{a^{\prime }}\left(\left( \underline{\alpha }_{a^{\prime }}e^{\omega }+\left( 1-\underline{\alpha }_{a^{\prime }}\right) e^{\omega ^{\prime }}\right) ,\hat{f}\right).\) By transitivity

$$ \left(a,\left( \bar{\alpha}_{a}e^{\omega }+\left( 1-\bar{\alpha}_{a}\right) e^{\omega ^{\prime }}\right) ,\hat{f}\right)\sim \left(a^{\prime },\left( \bar{\alpha} _{a^{\prime }}e^{\omega }+\left( 1-\bar{\alpha}_{a^{\prime }}\right) e^{\omega ^{\prime }}\right) ,\hat{f}\right) \label{equ4c} $$
(21)

and

$$ \left(a^{\prime },\left( \underline{\alpha }_{a}e^{\omega }+\left( 1-\underline{ \alpha }_{a}\right) e^{\omega ^{\prime }}\right) ,\hat{f}\right)\sim \left(a^{\prime },\left( \underline{\alpha }_{a^{\prime }}e^{\omega }+\left( 1-\underline{ \alpha }_{a^{\prime }}\right) e^{\omega ^{\prime }}\right) ,\hat{f}\right). \label{equ4d} $$
(22)

To simplify the notation, let \(\left( \alpha e^{\omega }+\left( 1-\alpha \right) e^{\omega ^{\prime }}\right) \equiv \hat{q}\left( \alpha \right) .\) Then, by Eqs. 21 and 22, a and a′ are elementarily linked at \(\hat{f}\in F\) and \(\hat{q}\left( \bar{\alpha}_{a}\right) ,\hat{q} \left( \underline{\alpha }_{a}\right) ,\hat{q}\left( \bar{\alpha}_{a^{\prime }}\right) ,\hat{q}\left( \underline{\alpha }_{a^{\prime }}\right) \in P.\)

Consider next \(\left( a,p,f\right) .\) By definition \(\big( a,e^{\omega }, \hat{f}\big) \succeq \big( a,p,f\big) \succeq \big( a,e^{\omega ^{\prime }},\hat{f}\big) .\) Thus, by (A.2) and (A.5), there is a unique α p such that \(\left( a,p,f\right) \sim \left( a,\hat{q}\left( \alpha _{p}\right) ,\hat{f}\right) \).

Consider the alternatives \(\left( a,p,f\right) \ \)and\(\ \left( a^{\prime },p^{\prime },f^{\prime }\right) \ \)and, without loss of generality, suppose that \(\left( a^{\prime },p^{\prime },f^{\prime }\right) \succeq \left( a,p,f\right) \). Three cases need to be considered:

Case 1: \(\left( a^{\prime },p^{\prime },f^{\prime }\right) \!\succeq\! \left(\! a,e^{\omega },\hat{f}\right) .\) Then \(V_{a^{\prime }}\left( p^{\prime },f^{\prime }\right) \!\geq\! U_{a}\!\left( \hat{f}\left( \omega \right) ,\omega \right) \!\geq\! V_{a}\left( p,f\right) .\)

Case 2: \(\left(\!a^{\prime },e^{\omega ^{\prime }},\hat{f}\right) \!\succeq\! \left(a,p,f\right) .\) Then \(V_{a^{\prime }}\left( p^{\prime },f^{\prime }\right) \!\geq\! U_{a^{\prime }}\left(\!\hat{f}\!\left( \omega ^{\prime }\right)\!,\omega ^{\prime }\right) \!\geq\! V_{a}\left( p,f\right) .\)

Case 3: \(\left( a^{\prime },e^{\omega },\hat{f}\right) \succ \left( a^{\prime },p^{\prime },f^{\prime }\right) \succeq \left( a,p,f\right) \succ \left( a^{\prime },e^{\omega ^{\prime }},\hat{f}\right) .\) Then, by (A.2) and (A.5), there are unique \(\hat{q}\left( \alpha _{p^{\prime }}\right) \) and \(\hat{q}\left( \alpha _{p}\right) \) such that \(\left( a^{\prime },p^{\prime },f^{\prime }\right) \sim \left( a^{\prime },\hat{q}\left( \alpha _{p^{\prime }}\right) ,\hat{f}\right) \) and \(\left( a,p,f\right) \sim \left( a^{\prime },\hat{q}\left( \alpha _{p}^{\prime }\right) ,\hat{f} \right) ,\) respectively. Moreover, by the same argument, there is a unique \( \hat{q}\left( \alpha _{p}\right) \) satisfying \(\left( a,p,f\right) \sim \left( a,\hat{q}\left( \alpha _{p}\right) ,\hat{f}\right) \). By transitivity, \(\left( a^{\prime },\hat{q}\left( \alpha _{p}^{\prime }\right) ,\hat{f}\right) \sim \left( a,\hat{q}\left( \alpha _{p}\right) ,\hat{f} \right) .\) Hence, by transitivity,

$$ \left( a^{\prime },\hat{q}\left( \alpha _{p^{\prime }}\right) ,\hat{f} \right) \sim \left( a^{\prime },p^{\prime },f^{\prime }\right) \succeq \left( a,p,f\right) \sim \left( a^{\prime },\hat{q}\left( \alpha _{p}^{\prime }\right) ,\hat{f}\right) \sim \left( a,\hat{q}\left( \alpha _{p}\right) ,\hat{f}\right) . \label{equ4e} $$
(23)

By Eqs. 14 and 15,

$$ \begin{array}{c} V_{a^{\prime }}\left( p^{\prime },f^{\prime }\right) =V_{a^{\prime }}\left( \hat{q}\left( \alpha _{p^{\prime }}\right) ,\hat{f}\right) =\\ \lambda \left( a^{\prime }\right) \left[ \alpha _{p^{\prime }}U(f\left( \omega \right) ,\omega )+\left( 1-\alpha _{p^{\prime }}\right) U\left(f\left( \omega ^{\prime }\right) ,\omega ^{\prime }\right)\right] +v\left( a^{\prime }\right) \geq \\ \lambda \left( a^{\prime }\right) \left[ \alpha _{p}^{\prime }U(f\left( \omega \right) ,\omega )+\left( 1-\alpha _{p}^{\prime }\right) U\left(f\left( \omega ^{\prime }\right) ,\omega ^{\prime }\right)\right] +v\left( a^{\prime }\right) = \\ \lambda \left( a\right) \left[ \alpha _{p}U(f\left( \omega \right) ,\omega )+\left( 1-\alpha _{p}\right) U\left(f\left( \omega ^{\prime }\right) ,\omega ^{\prime }\right)\right] +v\left( a\right) = \\ V_{a}\left( \hat{q}\left( \alpha _{p}\right) ,\hat{f}\right) =V_{a}\left( p,f\right) \label{equ4f} \end{array} $$
(24)

Thus, by Theorem 1 and Eqs. 19 and 20,

$$ \lambda \left( a^{\prime }\right) \sum_{\omega \in \Omega }p^{\prime }\left( \omega \right) U(f^{\prime }\left( \omega \right) ,\omega )+v\left( a^{\prime }\right) \geq \lambda \left( a\right) \sum_{\omega \in \Omega }p\left( \omega \right) U(f\left( \omega \right) ,\omega )+v\left( a\right). $$
(25)

If a and a′ are not elementarily linked, then, a and a′ are linked since A is linked. Define α 1,...,α n − 1 by \(\left( a_{i},\alpha _{i}\bar{p}_{i}+\left( 1-\alpha _{i}\right) \underline{p}_{i},f^{\ast }\right) \sim \left( a_{i+1},\alpha _{i}\bar{p}_{i}^{\prime }+\left( 1-\alpha _{i}\right) \underline{p}_{i}^{\prime },f^{\ast }\right) ,\) where a = a 1 and \( a^{\prime }=a_{n-1}.\) The conclusion follows by repeated application of the representation.

\(\left( b\right) \Rightarrow \left( a\right) .\) That (b) implies (A.1) – (A.5) follows from Theorem 1. That it implies (A.6) and (A.7) is immediate.

To prove the uniqueness part, note that, by Theorem 1, the functions U(·,ω),ω ∈ Ω, are unique up to a uniform positive linear transformation. Given U(·,ω),ω ∈ Ω, the uniqueness of λ(·) and v(·) follow from Eqs. 1720. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karni, E. A theory of medical decision making under uncertainty. J Risk Uncertain 39, 1–16 (2009). https://doi.org/10.1007/s11166-009-9071-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11166-009-9071-3

Keywords

JEL Classifications

Navigation