Skip to main content
Log in

Catalytic conversions of chloroolefines over iron oxide nanoparticles 3. Electronic and magnetic properties of γ-Fe2O3 nanoparticles immobilized on different silicas

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Catalytic properties of superparamagnetic γ-ferric oxide nanoclusters, which are uniform in terms of size and magnetic properties were studied. The catalysts were supported on the activated silica gel matrix (AGM) prepared from the KSK-2 silica gel of globular structure and on the activated silica matrix (ASM) prepared from layered natural vermiculite. The clusters are active in some reactions of chloroolefin conversions: isomerization of dichlorobutenes and alkylation of benzene with allyl chloride. Their activity in these reactions is many times higher that of usual supported catalysts based on α-ferric oxide. Analysis of the Mössbauer spectra of the 2.5 wt.% Fe/AGM and 2.5 wt.%Fe/ASM samples before and after the reaction at T = 3–300 K shows that during the reaction some FeIII ions arranged in ∼2–3-nm γ-Fe2O3 nanoclusters magnetically ordered at 6 K are reduced to form a high-spin FeII complex in the paramagnetic state. According to the macroscopic magnetization data (SQUID) of the initial clusters, curves with hysteresis are observed at 2 K in the plots of forward and backward magnetization, while the 2.5 wt.%Fe/ASM catalyst after the reaction at T = 2 K demonstrates a linear field dependence of the magnetization passing through the coordinate origin. Analysis of the Mössbauer spectra and magnetic properties suggests that during the catalytic reaction the FeIII ions in the γ-Fe2O3 nanoclusters interact with chloroolefin with the allylic structure to be partially reduced to the FeII ions that are bound in a complex containing chloride ions and OII ion(s) of the silicate matrix as ligands. This is a reason, probably, for the high catalytic activity of γ-Fe2O3 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. N. Rostovshchikova, M. S. Korobov, D. A. Pankratov, G. Yu. Yurkov, and S. P. Gubin, Izv. Akad. Nauk, Ser. Khim., 2005, 1383 [Russ. Chem. Bull., Int. Ed., 2005, 54, 1425].

    Google Scholar 

  2. T. N. Rostovshchikova, V. V. Smirnov, M. V. Tsodikov, O. V. Bukhtenko, Yu. V. Maksimov, O. I. Kiseleva, and D. A. Pankratov, Izv. Akad. Nauk, Ser. Khim., 2005, 1376 [Russ. Chem. Bull., Int. Ed., 2005, 54, 1418].

    Google Scholar 

  3. M. V. Tsodikov, T. N. Rostovshchikova, V. V. Smirnov, O. I. Kiseleva, Yu. V. Maksimov, I. P. Suzdalev, and V. N. Ikorskii, Catal. Today, 2005, 105, 634.

    Article  CAS  Google Scholar 

  4. T. N. Rostovshchikova, O. I. Kiseleva, G. Yu. Yurkov, S. P. Gubin, D. A. Pankratov, Yu. D. Perfil’ev, V. V. Smirnov, P. A. Chernavskii, and G. V. Pankina, Vestn. MGU, Ser. 2. Khim., 2001, 42, 318 [Vestn. Mosk. Univ., Ser. Khim., 2001, 42 (Engl. Transl.)].

    Google Scholar 

  5. M. V. Tsodikov, Ya. R. Katsobashvili, E. V. Slivinskii, Yu. V. Maksimov, V. V. Matveev, I. P. Suzdalev, O. G. Ellert, and G. F. Ivanova, Izv. Akad. Nauk SSSR, Ser. Khim., 1986, 2666 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1986, 35, 2443 (Engl. Transl.)].

    Google Scholar 

  6. Yu. V. Maksimov, M. V. Tsodikov, M. A. Perederii, I. P. Suzdalev, A. I. Nekhaev, V. T. Popov, and O. V. Bukhtenko, Izv. Akad. Nauk, Ser. Khim., 1997, 86 [Russ. Chem. Bull., 1997, 46, 81 (Engl. Transl.)].

  7. Yu. V. Maksimov, I. P. Suzdalev, V. N. Ikorskii, O. G. Ellert, V. M. Novotortsev, M. V. Tsodikov, and Kh. A. Navio, Neorg. Mater., 2006, 42, 1 [Inorg. Mater., 2006, 42 (Engl. Transl.)].

    Article  Google Scholar 

  8. L. A. Kazitsina and N. B. Kupletskaya, Primenenie UF-, IK-i YaMR-spektroskopii v organicheskoi khimii [The Use of UV, IR, and NMR Spectroscopy in Organic Chemistry], Vysshaya Shkola, Moscow, 1971, 236 (in Russian).

    Google Scholar 

  9. B. V. Kuznetsov, S. N. Lanin, T. A. Rakhmanova, V. V. Smirnov, M. V. Tsodikov, and D. V. Tarasova, Zh. Fiz. Khim., 2007, 81, No. 5 [Russ. J. Phys. Chem., 2007, 81 (Engl. Transl.)].

  10. S. V. Vonsovskii, Magnetizm [Magnetism], Nauka, Moscow, 1984, 112 (in Russian).

    Google Scholar 

  11. G. S. Kandaurova and L. T. Onoprienko, Domennaya struktura magnetikov. Osnovnye voprosy mikromagnetiki [Domain Structure of Magnetics. The Main Problems of Micromagnetics], Izd-vo UrGU, 1986, 106 (in Russian).

  12. N. N. Greenwood and T. C. Gibb, Mössbauer Spectroscopy, Chapman and Hall, London, 1971, 117.

    Google Scholar 

  13. E. Pfletschinger, Z. Physik., 1968, 200, 119.

    Article  Google Scholar 

  14. S. Chandra and G. R. Hoy, Phys. Lett., 1966, 22, 254.

    Article  CAS  Google Scholar 

  15. F. Alonso, I. P. Beletskaya, and M. Yus, Chem. Rev., 2002, 102, 4009.

    Article  CAS  Google Scholar 

  16. O. V. Krylov, Geterogennyi kataliz [Heterogeneous Catalysis], Akademkniga, Moscow, 2004, 337 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1705–1711, October, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rostovshchikova, T.N., Kiseleva, O.I., Smirnov, V.V. et al. Catalytic conversions of chloroolefines over iron oxide nanoparticles 3. Electronic and magnetic properties of γ-Fe2O3 nanoparticles immobilized on different silicas. Russ Chem Bull 55, 1768–1774 (2006). https://doi.org/10.1007/s11172-006-0485-7

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-006-0485-7

Key words

Navigation