Skip to main content
Log in

Solubilization of carbon nanoparticles, nanotubes, nano-onions, and nanodiamonds through covalent functionalization with sucrose

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Water solubilization of carbon nanoparticles (nanocarbons), single-walled nanotubes (SWCNTs), nano-onions (NOs) and nanodiamonds (NDs) has been achieved through their covalent functionalization by fluorination and subsequent derivatization with sucrose. The covalent bonding of sucrose to the surface of the fluorinated nanocarbons was attained by a one-step fluorine substitution reaction with sucrose-derived lithium monosucrate under sonication in DMF at room temperature. This chemical process provides a simple, inexpensive, and easily scalable method for hydrophilic chemical modification of SWCNT, NO, and ND surfaces to produce sucrose-functionalized nanocarbons that become soluble in water, DMF, ethanol, and other polar solvents. The sucrose-functionalized nanocarbon particles are expected to be biocompatible due to the abundance of hydroxyl groups available for hydrogen bonding and further chemical modification. Relevant examples have been given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. G. Rakov, Russ. Chem. Revs, 2001, 70, 827; (b) A. Hirsch, Angew. Chem., Int. Ed., 2002, 41, 1853; (c) A. Hirsh, O. Vostrowsky, Top. Curr. Chem., 2005, 245, 193.

    Article  CAS  Google Scholar 

  2. S. Banerjee, T. Hemraj-Benny, S. S. Wong, Adv. Mater., 2005, 17, 17.

    Article  CAS  Google Scholar 

  3. Y. Show, M. A. Witek, P. Sonthalia, G. M. Swain, Chem. Mater., 2003, 15, 879.

    Article  CAS  Google Scholar 

  4. E. Wilks, J. Wilks, Properties and Applications of Diamond, Butterworth, Oxford, England, 1997.

    Google Scholar 

  5. M. Choi, I. S. Altman, Y. J. Kim, P. V. Pikhitsa, S. Lee, G. S. Park, T. Jeong, J. B. Yoo, Adv. Mater., 2004, 16, 1721.

    Article  CAS  Google Scholar 

  6. J. C. Francis, Solid Lubricants and Self-lubricating Solids, Academic Press, New York, 1972.

    Google Scholar 

  7. Y. Liu, R. L. Vander Wal, V. N. Khabashesku, Chem. Mater., 2007, 19, 778.

    Article  CAS  Google Scholar 

  8. A. Bianco, K. Kostarelos, C. D. Partidos, M. Prato, Chem. Commun., 2005, 571.

  9. A. S. Rettenbacher, B. Elliott, J. S. Hudson, A. Amirkhanian, L. Echegoyen, Chem. Eur. J., 2005, 12, 376.

    Article  CAS  Google Scholar 

  10. A. Krüger, Y. Liang, G. Jarre, J. J. Stegk, Mater. Chem., 2006, 16, 2322.

    Article  Google Scholar 

  11. J. J. Stephenson, J. L. Hudson, A. D. Leonard, B. K. Price, J. M. Tour, Chem. Mater., 2007, 19, 3491.

    Article  CAS  Google Scholar 

  12. L. Feng, J. M. Beach, P. K. Rai, W. Guo, R. H. Hauge, M. Pasquali, R. E. Smally, W. E. Billups, Chem. Mater., 2006, 18, 1520.

    Article  Google Scholar 

  13. V. N. Khabashesku, W. E. Billups, J. L. Margrave, Acc. Chem. Res., 2002, 35, 1087; (b) Y. S. Lee, T. H. Cho, B. K. Lee, J. S. Rho, K. H. An, Y. H. Lee, J. Fluorine Chem., 2003, 120, 99; (c) A. V. Krestinin, A. P. Kharitonov, Yu. M. Shul’ga, O. M. Zhigalina, E. I. Knerel’man, M. Dubois, M. M. Brzhezinskaya, A. S. Vinogradov, A. B. Preobrazhenskii, G. I. Zvereva, M. B. Kislov, V. M. Martynenko, I. I. Korobov, G. I. Davydova, V. G. Zhigalina, N. A. Kiselev, Nanotech_ nologies in Russia, 2009, 4, 115.

    Article  CAS  Google Scholar 

  14. M. Burghard, Surface Sci. Reports, 2005, 58, 1; (b) V. N. Khabashesku, M. X. Pulikkathara, Mendeleev Commun., 2006, 61.

    CAS  Google Scholar 

  15. V. N. Khabashesku, Fluorination of Carbon Nanotubes, in Chemistry of Carbon Nanotubes, Eds V. A. Basiuk, E. A. Basiuk, Stevenson Ranch, CA: ASP Publishers, 2007, Vol. 1, 522; (b) V. N. Khabashesku, O. V. Kuznetsov, M. X. Pulikkathara, Carbon Nanotubes: Fluorinated Derivatives in Nanomaterials: Inorganic and Bioinorganic Perspectives, Eds C. M. Lukehart, R. A. Scott, John Wiley and Sons, Ltd, Chichester, 2009, 856 pp.

    Google Scholar 

  16. Y. Liu, Z. Gu, J. L. Margrave, V. N. Khabashesku, Chem. Mater., 2004, 16, 3924.

    Article  CAS  Google Scholar 

  17. V. N. Khabashesku, H. Peng, J. L. Margrave, Nanotube- Amino acids and Methods for Preparing Same (WO/2005/ 070828), Internat. Pat. Application No.: PCT/US2005/ 001310, Internat. Filing Date: 18.01.200, Priority Data: 60/537,982 21.01.2004 US.

  18. M. X. Pulikkatara, V. N. Khabashesku, Izv. Akad. Nauk. Ser. Khim., 2008, 1035 [Russ. Chem. Bull., Int. Ed., 2008, 57, 1054].

  19. M. X. Pulikkathara, O. V. Kuznetsov, V. N. Khabashesku, Chem. Mater., 2008, 20, 2685.

    Article  CAS  Google Scholar 

  20. L. Zhang, V. U. Kiny, H. Peng, R. F. M. Lobo, J. L. Margrave, V. N. Khabashesku, Chem. Mater., 2004, 16, 2055.

    Article  CAS  Google Scholar 

  21. S. J. V. Frankland, A. Caglar, D. W. Brenner, M. J. Griebel, J. Phys. Chem. B, 2002, 106, 3046.

    Article  CAS  Google Scholar 

  22. J. N. Coleman, U. Khan, Y. K. Gun’ko, Adv. Mater., 2006, 18, 689.

    Article  CAS  Google Scholar 

  23. P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smalley, Chem. Phys. Lett., 1999, 313, 91; (b) R. L. Vander Wal, A. J. Tomasek, K. W. Street, D. R. Hull, W. K. Thompson, Appl. Spectros?., 2004, 58, 230.

    Article  CAS  Google Scholar 

  24. C. A. Browne, A Handbook of Sugar Analysis, John Wiley and Sons, New York; Chapman and Hall, London, 1912, p. 676.

    Google Scholar 

  25. M. Manley-Harris, W. Moody, G. N. Richards, Austral. J. Chem., 1980, 33, 1041.

    Article  CAS  Google Scholar 

  26. J. Fitremann, Y. Queneau, J.-P. Maitre, A. Bouchu, Tetrahedron Lett., 2007, 48, 4111.

    Article  CAS  Google Scholar 

  27. P. E. Shaw, J. H. Tatum, R. E. Berry, J. Agr. Food. Chem., 1969, 17, 907.

    Article  CAS  Google Scholar 

  28. P. L. Polavarapu, S. R. Chatterjee, D. F. Michalska, Carbohydrate Res., 1985, 137, 253.

    Article  CAS  Google Scholar 

  29. M. V. Korolevich, R. G. Zhbankov, V. V. Sivchik, J. Mol. Struct., 1990, 220, 301.

    Article  CAS  Google Scholar 

  30. J. W. Ager III, D. K. Veirs, G. M. Rosenblatt, Phys. Rev. B, 1991, 43, 6491.

    Article  CAS  Google Scholar 

  31. A. C. Ferrari, J. Robertson, Phys. Rev. B, 2000, 61, 14095.

    Article  CAS  Google Scholar 

  32. V. A. Davydov, A. V. Rakhmanina, S. Rols, V. Agafonov, M. X. Pulikkathara, R. L. Vander Wal, J. Phys. Chem. C, 2007, 111, 12918.

    Article  CAS  Google Scholar 

  33. S. Wang, R. Liang, B. Wang, C. Zhang, Nanotechnology, 2008, 19, 085710.

    Article  Google Scholar 

  34. N. P. G. Roeges, Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Jonn Wiley and Sons Publ., Chichester-New York-Brisbane-Toronto- Singapore, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Khabasheskua.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1462-1472, August, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, O.V., Pulikkathara, M.X., Lobo, R.F.M. et al. Solubilization of carbon nanoparticles, nanotubes, nano-onions, and nanodiamonds through covalent functionalization with sucrose. Russ Chem Bull 59, 1495–1505 (2010). https://doi.org/10.1007/s11172-010-0269-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-010-0269-y

Navigation