Skip to main content
Log in

Specific properties of hydroxyapatite as a potential transporter of copper ions and its complexes

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Modification of the cocrystallization method for producing hydroxyapatite (HAP) and an HAP-Cu combination to the enzymatic method using alkaline phosphatase leads to a change in the morphology, sizes, sorption capacity, type of particles, and conformity with the Langmuir and Freundlich models. A positive factor of the enzyme usage is an increase in the sorption capacity and the possibility to strictly control the particle sizes depending on the concentration of the enzyme used. The L2CuCl4 complex was synthesized on the basis of 2-aminopyrimidine (L), which is the precursor of many anticancer drugs, and the possibilities of introducing L2CuCl4 into the HAP composite were considered. The cytotoxicity data for various HAP and L2CuCl4 composites with respect to various types of leukemic cells as compared to lymphocytes of healthy donors showed antileukemic activity of the copper complex and the absence of HAP cytotoxicity in a wide range of concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Sun, H. Zhou, J. Lee, Acta Biomaterialia, 2011, 7, 3813.

    Article  CAS  PubMed  Google Scholar 

  2. D. W. Hutmacher, J. T. Schantz, C. X. F. Lam, K. C. Tan, T. C. Lim, J. Tissue Eng. Regenerative Med., 2007, 1, 245.

    Article  CAS  Google Scholar 

  3. R. Tabti, N. Tounsi, C. Gaiddon, E. Bentouhami, L. Desaubry, Med. Chem. (Los Angeles), 2017, 7, 875.

    Article  CAS  Google Scholar 

  4. J. J. R. Silva, R. J. P. Williams, The Biological Chemistry of Elements. The Inorganic Chemistry of Life, Clarendon Press, Oxford, 1994.

    Google Scholar 

  5. B. Singh, J. Mishra, K. S. Pitre, A. Pradhan, P. Soni, Int. J. Biotechnol. Wellness Industries, 2013, 2, 39.

    Google Scholar 

  6. M. Plotek, K. Dudek, A. Kyziol, Chemik., 2013, 12, 1181.

    Google Scholar 

  7. J. P. Laussac, B. Sarker, Biochemistry, 1984, 23, 2832.

    Article  CAS  PubMed  Google Scholar 

  8. Y. Lee, Y. Lin, C. Lima, J. Chin. Chem. Soc., 2014, 61, 142.

    Article  CAS  Google Scholar 

  9. M. Tabata, B. Sarkar, Can. J. Chem., 1985, 63, 3111.

    Article  CAS  Google Scholar 

  10. J. Lee, J. R. Prohaska, D. J. Thiele, Proc. Natl. Acad. Sci. USA, 2001, 98, 6842.

    Article  CAS  PubMed  Google Scholar 

  11. J. H. Freedman, M. R. Ciriolo, J. Peisach, J. Biol. Chem., 1989, 264, 5598.

    CAS  PubMed  Google Scholar 

  12. M. A. Pogosova, A. A. Eliseev, P. E. Kazin, F. Azarmi, Dyes and Pigments, 2017, 141, 209.

    Article  CAS  Google Scholar 

  13. T. P. Trofimova, M. A. Orlova, A. V. Severin, E. S. Shalamova, A. N. Proshin, A. P. Orlov, Russ. Chem. Bull., 2018, 67, 768.

    Article  CAS  Google Scholar 

  14. M. Othmani, H. Bachoua, Y. Ghandour, A. Aissa, M. Debbabi, Mat. Res. Bull., 2018, 97, 560.

    Article  CAS  Google Scholar 

  15. S. Kadouchea, H. Zemmouri, K. Benaoumeura, N. Drouichea, P. Sharrockd, H. Lounici, Proc. Eng., 2012, 33, 377.

    Article  CAS  Google Scholar 

  16. A. Corami, F. D'Acapito, S. Mignardi, V. Ferrini, Mater. Sci. Enng., 2008, 149, 209.

    Article  CAS  Google Scholar 

  17. I. V. Melikhov, V. F. Komarov, A. V. Severin, V. E. Bozhevol'nov, V. N. Rudin, Dokl. Akad. Nauk, 2000, 373, 355 [Dokl. Chem. (Engl. Transl.), 2000].

    CAS  Google Scholar 

  18. A. V. Severin, D. A. Pankratov, Zh. Neorg. Khim., 2016, 61, 1 [Russ. J. Inorg. Chem. (Engl. Transl.), 2016, 61].

    Google Scholar 

  19. C. Zanchini, R. D. Willett, Inorg. Chem., 1990, 29, 3027.

    Article  CAS  Google Scholar 

  20. M. A. Orlova, E. Yu. Osipova, S. A. Roumiantsev, S. P. Ashurko, Russ. Chem. Bull., 2012, 61, 405.

    Article  CAS  Google Scholar 

  21. A. Bigi, E. Foresti, M. Gandolfi, M. Gazzano, N. Roveri, J. Inorg. Biochem., 1995, 58, 49.

    Article  CAS  Google Scholar 

  22. S. Brundavanam, G. Eddy, J. Poinern, D. Fawcett, Am. J. Mater. Sci., 2015, 5, 31.

    Google Scholar 

  23. O. Livitska, N. Strutynska, I. Zatovsky, A. Baeda, Werkstofftech., 2016, 47, 85.

    Article  CAS  Google Scholar 

  24. L. Cheng, F. Ye, R. Yang, Acta Biomaterialia, 2010, 6, 1569.

    Article  CAS  PubMed  Google Scholar 

  25. A. V. Severin, M. A. Orlova, T. P. Trofimova, E. S. Shalamova, I. A. Ivanov, Russ. Chem. Bull., 2017, 66, 9.

    Article  CAS  Google Scholar 

  26. A. P. Orlov, T. P. Trofimova, E. Yu. Osipova, A. N. Proshin, M. A. Orlova, Russ. Chem. Bull., 2017, 66, 1860.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Orlova.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1102–1108, May, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlova, M.A., Nikolaev, A.L., Trofimova, T.P. et al. Specific properties of hydroxyapatite as a potential transporter of copper ions and its complexes. Russ Chem Bull 68, 1102–1108 (2019). https://doi.org/10.1007/s11172-019-2526-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-019-2526-z

Key words

Navigation