Skip to main content
Log in

Shape Memory Effect and Superelasticity in [001] Single Crystals of Fe–Ni–Co–Al–Nb(B) Ferromagnetic Alloy

  • Published:
Russian Physics Journal Aims and scope

An Erratum to this article was published on 07 May 2016

Shape memory effect (SME) and superelasticity (SE) during thermoelastic martensitic transformation (MT) from the FCC high-temperature γ-phase to the BCT α'-martensite are investigated in Fe – 28% Ni – 17% Co – 11.5% Al – 2.5% Nb (Nb) and Fe – 28% Ni – 17% Co – 11.5% Al – 2.5% Nb – 0.05% B (NbB) (at.%) single crystals oriented for tension along the [001] direction after aging at 973 K for 10 h. Non-equiaxial (NiAl) β-phase particles with thickness d and length l equal to 60–80 and 340–500 nm, respectively, and volume fraction f ≥ 3–5% are precipitated in Nb crystals during aging simultaneously with the (FeNiCo)3(AlNb) γ´-phase with sizes d = 12.5–16.5 nm. It is shown that precipitation of the β-phase with f ≤ 3–5% in the crystal volume does not reduce the crystal plasticity, and SME of 4.2% and SE up to 6.5% under loading are observed during thermoelastic γ–α′ MT in single crystals in a wide range of temperatures from 77 to 293 K. The β-phase is not detected in NbB crystals during aging. It is established that boron in NbB crystals slows down the aging processes: the γ′-phase particles have sizes 6.5–8 nm. The SME of 4.2% and SE up to 4.0% are observed in NbB crystals at temperatures from 77 to 243 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Tanaka, Y. Himuro, R. Kainuma, et al., Science, 327, 1488–1490 (2010).

    Article  ADS  Google Scholar 

  2. T. Omori, K. Ando, M. Okano, et al., Science, 333, 68–71 (2011).

    Article  ADS  Google Scholar 

  3. D. Lee, T. Omori, and R. Kainuma, J. Alloys Comp., 617, 120–123 (2014).

    Article  Google Scholar 

  4. Y. Geng, D. Lee, X. Xu, et al., J. Alloys Comp., 628, 287–292 (2015).

    Article  Google Scholar 

  5. I. V. Kireeva, Yu. I. Chumlyakov, V. A. Kirillov, et al., Russ. Phys. J., 53, No. 10, 1103–1106 (2011).

    Article  Google Scholar 

  6. I. V. Kireeva, Yu. I. Chumlyakov, V. A. Kirillov, et al., Tech. Phys. Let., 37, No. 5, 487–490 (2011).

    Article  Google Scholar 

  7. Yu. I. Chumlyakov, I. V. Kireeva, E. Yu. Panchenko, et al., Russ. Phys. J., 54, No. 8, 937–950 (2012).

    Article  Google Scholar 

  8. Yu. I. Chumlyakov, I. V. Kireeva, O. A. Kuts, et al., Russ. Phys. J., 57, No. 10, 1328–1335 (2015).

    Article  Google Scholar 

  9. V. V. Kokorin, Martensitic Transformation in Inhomogeneous Solid Solutions [in Russian], Naukova Dumka, Kiev, 1987.

    Google Scholar 

  10. L. P. Gun’ko, G. A. Takazei, and A. N. Titenko, Phys. Met. Metallography, 91, No. 6, 624–628 (2001).

    Google Scholar 

  11. E. Hornbogen and N. Jost, J. Physique IV, Colloque C4, Supplement an J. de Physique, III, No. 11, C4-199–C4-210 (1991).

    Google Scholar 

  12. E. Hornbogen, in: Proc. Int. Conf. on Martensitic Transformations, The Japan Institute of Metals (1986), pp. 453–458.

  13. H. Y. Yasuda, M. Aoki, A. Takaoka, et al., Scripta Mat., 53, 253–257 (2005).

    Article  Google Scholar 

  14. T. Maki, Shape Memory Materials, K. Otsuka and C. M. Wayman, eds., Cambridge University Press, United Kingdom (1998).

    Google Scholar 

  15. H. Sehitoglu, C. Efstathion, H. J. Maier, and Y. Chumlyakov, Mech. Mater., 38, 538–550 (2006).

    Article  Google Scholar 

  16. H. Sehitoglu, X. Y. Zhang, T. Kotil, D. Canadic, et al., Metallurg. Mater. Trans., 33A, 3661–3672 (2002).

    Article  Google Scholar 

  17. A. Evirgen, J. Ma, I. Karaman, et al., Scripta Mat., 67, 475–478 (2012).

    Article  Google Scholar 

  18. J. Ma, B. Kockar, A. Evirgen, et al., Acta Mat., 60, 2186–2195 (2012).

    Article  Google Scholar 

  19. J. Ma, B. C. Hombuckle, I. Karaman, et al., Acta Mat., 61, No. 9, 3445–3455 (2013).

    Article  Google Scholar 

  20. P. Kroos, T. Niendorf, I. Karaman, et al., Funct. Mater. Lett., 5, No. 5, 1250045 (4 pp.) (2012).

    Article  ADS  Google Scholar 

  21. P. Khirsh, A. Khovi, R. Nikolson, et al., Electron Microscopy of Thin Crystals [Russian translation], Mir, Moscow (1968).

    Google Scholar 

  22. Yu. I. Chumlyakov, I. V. Kireeva, A. D. Korotaev, et al., Russ. Phys. J., 39, No. 3, 189–210 (1996).

    Article  Google Scholar 

  23. K. Otsuka and X. Ren, Prog. Mater. Sci., 50, No. 5, 511–678 (2005).

    Article  Google Scholar 

  24. K. Otsuka, A. Saxena, J. Deng, et al., Phil. Mag., 91, No. 36, 4514–4535 (2011).

    Article  ADS  Google Scholar 

  25. E. Nembach, Particle Strengthening of Metals and Alloys, John Wiley & Sons, Inc., New York; Chichester; Brisbane; Toronto; Singapore; Weinheim (1997).

    Google Scholar 

  26. M. F. Ashby, Phil. Mag., 21, 399–424 (1970).

    Article  ADS  Google Scholar 

  27. E. Hornbogen, V. Mertinger, and D. Wurzel, Scripta Mater., 44, 171–178 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Chumlyakov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 16–23, July, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chumlyakov, Y.I., Kireeva, I.V., Kuts, O.A. et al. Shape Memory Effect and Superelasticity in [001] Single Crystals of Fe–Ni–Co–Al–Nb(B) Ferromagnetic Alloy. Russ Phys J 58, 889–897 (2015). https://doi.org/10.1007/s11182-015-0587-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-015-0587-5

Keywords

Navigation