Skip to main content
Log in

A Teaching–Learning Sequence for the Special Relativity Theory at High School Level Historically and Epistemologically Contextualized

  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

This paper discusses some topics that stem from recent contributions made by the History, the Philosophy, and the Didactics of Science. We consider these topics relevant to the introduction of the Special Relativity Theory (SRT) in high school within a contextualized approach. We offer an outline of a teaching–learning sequence dealing with the SRT within this frame of reference. Such a sequence was tried out on a group of high school students in Argentina. The results obtained seem to indicate that the proposal has been effective as regards the motivational aspects and the understanding students gained of some of its concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In the introduction of his article “On the electrodynamics of moving bodies” (Annalen der Physik, vol. XVII, pp. 891–921) Einstein says, “Take, for example, the electrodynamic interaction between a magnet and a conductor. The observable phenomenon here depends only on the relative motion of conductor and magnet, whereas the customary view draws a sharp distinction between the two cases in which either the one or the other of the two bodies is in motion. For if the magnet is in motion and the conductor is at rest, and electric field with a definite energy value results in the vicinity of the magnet that produces a current wherever parts of the conductor are located. But if the magnet is at rest while the conductor is moving, no electric field results in the vicinity of the magnet, but rather an electromotive force in the conductor, to which no energy per se corresponds, but which, assuming an equality of relative motion in the two cases, gives rise to electric currents of the same magnitude and the same course as those produced by the electric forces in the former case”.

  2. See, in this regard, a very interesting presentation in Villani’s work (1981–1985), in which this author introduces also the reason why Einstein’s program succeeded in contrast to Lorentz’s, even though at the time there was no empirical evidence for or against one of these theories.

  3. Apart from these points, the “ideas” the SRT generated in the scientific community can be the starting point to analyze the originality of the theory. From the perspective of a physicist such as Feynman (1963) the most relevant ones would be the fact that ideas that have been supported for a long period of time and have been clearly demonstrated could be wrong, the fact that “strange” ideas, such as time dilatation when one is in motion, can not be abandoned a priori, whether one likes it or not, and the fact that it is necessary to notice the symmetry in laws, which is the way in which laws can be transformed and remain the same. This last approach has characterized the research into the physics of particles and fields.

  4. However, it should be made clear that the influences attributed to the SRT in art and other cultural expressions sometimes brought about unfortunate results, to the extent of distorting concepts of key aspects of the SRT, leading to a terminological confusion. “Physical relativity”, a term which has a clear meaning within the context of the theory, was misunderstood as “everything is relative”, that is to say that all points of view on a matter are equally valid and that “truth” or “reality” is the combination of all the views expressed on such phenomenon. This was probably the most serious misunderstanding that the success of the SRT caused outside the field of Physics. Even though you can adopt this epistemological posture, such view does not emerge from the SRT, in which nature laws remain the same regardless of the reference frame used. For this reason, the SRT is universally valid and even more “absolute” than classical Physics.

  5. http://users.exa.unicen.edu.ar/~irenearr/propuesta didactica 2008.pdf.

  6. The two periods of Physics were divided in two different days. One of those days was Monday to which all the national holidays were moved. Therefore, many classes were missed. On the other hand, several activities typically done by students in their senior year (trips, special days) and other institutional ones (teacher training courses) took place on the days assigned to Physics classes.

  7. Both the concept map and the comic strip have been translated from Spanish into English.

References

  • Adúriz-Bravo, A., & Izquierdo-Aymerych, M. (2009). Un modelo de modelo científico para la enseñanza de las ciencias naturales, Revista Electrónica de Investigación en Educación en Ciencias, 4(1), 40–49. http://www.exa.unicen.edu.ar/reiec/files/num_esp/2009/REIEC_esp_2009_art4.pdf.

  • Adúriz-Bravo, A., Izquierdo-Aymerych, M., & Estany, A. (2002). Una propuesta para estructurar la enseñanza de la filosofía de la ciencia para el profesorado de ciencias en formación. Enseñanza de las Ciencias, 20(3), 466–476.

    Google Scholar 

  • Aleman Berenger, R. A. (1997). Errores comunes sobre Relatividad entre los profesores de enseñanza secundaria’. Enseñanza de las Ciencias, 15(3), 301–307.

    Google Scholar 

  • Aleman Berenger, R., & y Pérez Selles, J. (2000). Enseñanza por cambio conceptual: de la Física Clásica a la Relatividad’. Enseñanza de las Ciencias, 18(3), 463–471.

    Google Scholar 

  • Allchin, D. (2004). Pseudo history and pseudoscience. Science & Education, 13(3), 179–195.

    Article  Google Scholar 

  • Angotti, J. A., Caldas, I. L., Delizoicov, D., Rüdinger, D., & Pernambuco, M. (1978). Teaching relativity with different philosophy. American Journal of Physics, 46(12), 1258–1263.

    Article  Google Scholar 

  • Arriassecq, I. (2008). La enseñanza y el aprendizaje de la Teoría Especial de la Relatividad en el nivel medio/polimodal. Ph.D. dissertation, Universidad de Burgos, España.

  • Arriassecq, I., & Greca, I. M. (2002). Algunas consideraciones históricas, epistemológicas y didácticas para el abordaje de la Teoría de la Relatividad Especial en el nivel medio y polimodal. Ciência & Educação, 8(1), 55–69.

    Article  Google Scholar 

  • Arriassecq, I., & Greca, I. M. (2005). Análisis de aspectos relevantes para el abordaje de la Teoría de la Relatividad Especial en los últimos años de la enseñanza media desde una perspectiva contextualizada histórica y epistemológicamente. Revista de enseñanza de la Física, 18(1–2), 17–28.

    Google Scholar 

  • Arriassecq, I., & Greca, I. M. (2006). Introducción de la Teoría de la Relatividad Especial en el nivel medio/polimodal de enseñanza: identificación de teoremas-en-acto y determinación de objetivos-obstáculo, Revista Investigações em Ensino de Ciencias, 11(2). http//www.if.ufrgs.br/ienci.

  • Arriassecq, I., & Greca, I. M. (2007). Approaches to Special Relativity Theory in school and university textbooks in Argentina. Science & Education, 16(1), 65–86.

    Article  Google Scholar 

  • Astin, C. (2005). Teaching relativity to 10-years-olds. School Science Review, 316, 34–35.

    Google Scholar 

  • Ausubel, D. (2002). Adquisición y retención del conocimiento. Una perspectiva cognitiva. Barcelona: Paidós.

    Google Scholar 

  • Ausubel, D., Novak, J., & Hanesian, H. (1991). Psicología Educativa, un punto de vista cognoscitivo. México: Ed. Trillas.

    Google Scholar 

  • Bachelard, G. (1991). La formación del espíritu científico. México: Siglo XXI.

    Google Scholar 

  • Boido, G. (1996). Noticias del planeta Tierra: Galileo Galilei y la revolución científica. Buenos Aires: A-Z Editores.

    Google Scholar 

  • Boido, G., Flichman, E., & Yague, J. (1988). Pensamiento Científico. Buenos Aires: CONICET.

    Google Scholar 

  • Capek, M. (1961). The philosophical impact of contemporary Physics. Princeton, NJ: Van Nostrand.

    Google Scholar 

  • Duit, R. (2006). La investigación sobre enseñanza de las ciencias. Revista Mexicana de Investigación Educativa, 11(30), 741–770.

    Google Scholar 

  • Duschl, R. (1997). Renovar la enseñanza de las ciencias. Importancia de las teorías y su desarrollo. Madrid: Narcea. (Ed. original en inglés, 1990).

    Google Scholar 

  • Eddington, S. A. (1920). Space, time and gravitation: An outline of the General Relativity Theory. Cambridge: University Press.

    Google Scholar 

  • Eddington, S. A. (1945). La Naturaleza Del Mundo Físico. Buenos Aires: Editorial Sudamericana.

    Google Scholar 

  • Fabri, E. (2001). Insegnare Relativitá nel XX Secolo, ftp://osiris.df.unipi.it/pub/sagredo/aq.relat/.

  • Feynman, R., et al. (1963). The Feynman lectures on physics. Addison-Wesley.

  • Fraunford, P. (2007). Three self-consistent kinematics in (1 + 1) D Special relativity. http://citeseer.ist.psu.edu/48378.html. Accessed 28 August 2009.

  • Hewson, P. (1982). A case study of conceptual change in Special Relativity. The influence of prior knowledge in learning. European Journal of Science Education, 4(61), 61–78.

    Article  Google Scholar 

  • Hodson, D. (1986). Philosophy of science and science education, Journal of Philosophy of Education, 20(2).

  • Holton, G. (1982a). Ensayos sobre el pensamiento científico en la época de Einstein. Madrid: Alianza Editorial.

    Google Scholar 

  • Holton, G. (1982b) (Co-editor). Albert Einstein, historical and cultural perspectives. Princeton: Princeton University Press.

  • Jammer, M. (1970). Conceptos de Espacio. México D.F.: Ed. Grijalbo.

    Google Scholar 

  • Jiménez Aleixandre, M. P. (1995). Comparando teorías. La reflexión sobre la naturaleza de la ciencia en la formación del profesorado, en Blanco, L. y Mellado, V. (coords.). La formación del profesorado de ciencias y matemáticas en España y Portugal, pp. 267–272. Badajoz: Imprenta de la Diputación Provincial.

  • Kragh, H. (1989). Introducción a la historia de la ciencia. Barcelona: Crítica.

    Google Scholar 

  • Levrini, O. (2002). The substantivalist view of spacetime proposed by Minkowski and its educational implications. Science & Education, 11(6), 601–617.

    Article  Google Scholar 

  • Levrini, O., & Disessa, A. A. (2008). How students learn from multiple contexts and definitions: proper time as a coordination class. Physical Review Special Topics—Physics Education Research, 4, 010107.

    Article  Google Scholar 

  • Martinand, J. L. (1986). Connaître et transformer la matière. Berna: Peter Lang.

    Google Scholar 

  • Martins, A., & Pacca, J. (2005). O conceito de tempo entre estudantes de ensino fundamental e médio: uma análise à luz da epistemologia de Gaston Bachelard, Investigações em Ensino de Ciências, 10(3). http://www.if.ufrgs.br/public/ensino/vol10/n3/v10_n3_a2.html.

  • Matthews, M. R. (1994). Historia, Filosofía y Enseñanza de las Ciencias: la aproximación actual. Enseñanza de las Ciencias, 2(12), 255–277.

    Google Scholar 

  • McComas, W. F., Almazroa, H., & Clough, M. (1998). The nature of science in science education: An introduction. Science & Education, 7, 511–532.

    Article  Google Scholar 

  • Newton-Smith, W. H. (1980). The structure of time. London: Routledge.

    Google Scholar 

  • Pais, A. (1984). El Señor es sutil … La Ciencia y la Vida de Albert Einstein. Barcelona: Ariel.

    Google Scholar 

  • Panse, S., Ramadas, J., & Kumar, A. (1994). Alternative conceptions in Galilean Relativity: Frames of references. International Journal of Science Education, 16(1), 63–82.

    Article  Google Scholar 

  • Pearce Williams, L. (1989). La teoría de la relatividad—Selección. Madrid: Alianza Editorial.

    Google Scholar 

  • Pérez, H. (2003). La Teoría de la Relatividad y su didáctica en el bachillerato: análisis de dificultades y una propuesta de tratamiento. Ph.D. dissertation, Universitat de Valencia.

  • Pérez, H., & Solbes, J. (2003). Algunos problemas en la enseñanza de la Relatividad. Enseñanza de las Ciencias, 21(1), 135–146.

    Google Scholar 

  • Pietrocola, M., & Zylbersztajn, A. (1999). The use of the principle of relativity in the interpretation of phenomena by undergraduate students’. International Journal of Science Education, 21(3), 261–276.

    Article  Google Scholar 

  • Posner, G., Strike, A., Hewson, P., & Gertzog, W. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211–227.

    Article  Google Scholar 

  • Ramadas, J., Barve, S., & Kumar, A. (1996). Alternative conceptions in Galilean Relativity: Inertial and non-inertial observers. Science Education, 18(5), 611–626.

    Google Scholar 

  • Rossi, B., & Hall, D. (1941). Variation of the rate of decay of mesotrons with momentum. Physical Review, 59, 223–228.

    Article  Google Scholar 

  • Salgado, R. (2004). Visualizing proper-time in special relativity. Physics Teacher (Indian Physical Society), 46(4), 132–143.

    Google Scholar 

  • Saltiel, E., & Malgrange, J. (1980). Spontaneous’ ways of reasoning in elementary kinematics. European Journal of Physics, 1, 73–80.

    Article  Google Scholar 

  • Sanchez Ron, J. M. (1985). El origen y el desarrollo de la Relatividad. Madrid: Alianza Editorial.

    Google Scholar 

  • Scherr, R. E., Shaffer, P. S., & Vokos, S. (2001). Student understanding of time in special relativity: Simultaneity and references frames. American Journal of Physics, 69(7), S24–S35.

    Article  Google Scholar 

  • Scherr, R. E., Shaffer, P. S., & Vokos, S. (2002). The challenge of changing deeply held student beliefs about relativity of simultaneity. American Journal of Physics, 70(12), 1238–1248.

    Article  Google Scholar 

  • Solbes, J. (1986). La introducción de los conceptos básicos de física moderna. Ph.D. dissertation. Universitat de València.

  • Vergnaud, G. (1990). La théorie des champs conceptuels. Recherches en Didactique des Mathématiques, 10(23), 133–170.

    Google Scholar 

  • Vigotsky, L. (1987). Pensamiento y lenguaje. Buenos Aires: La Pléyade.

    Google Scholar 

  • Villani, A. (1981). O confronto Lorentz-Einstein e suas interpretações (partes I, II, III, e IV). Revista de Ensino de Física, 3, (1, 2, 3 & 4).

  • Villani, A. (1992). Conceptual change in science and science education. Science Education, 76(2), 223–237.

    Article  Google Scholar 

  • Villani, A., & Arruda, S. (1998). Special Theory of Relativity, conceptual change and History of Science. Science & Education, 7(2), 85–100.

    Article  Google Scholar 

  • Villani, A., & Pacca, J. (1987). Students’ spontaneous ideas about the speed of light. International Journal of Science Education, 9(1), 55–66.

    Article  Google Scholar 

  • Whittaker, E. (1989). La teoría de la relatividad: sus orígenes e impacto sobre el pensamiento moderno. Madrid: Alianza Editorial.

    Google Scholar 

Download references

Acknowledgments

The first author of this work has received financial support from the National Agency of Scientific and Technological Promotion, FONCyT (BID 1728/OC-AR) - PICT - 05 Nº: 34479.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Arriassecq.

Appendix

Appendix

See Table 2.

Table 2 Summary of the topics that have been covered and produced as written support material for the teaching proposal

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arriassecq, I., Greca, I.M. A Teaching–Learning Sequence for the Special Relativity Theory at High School Level Historically and Epistemologically Contextualized. Sci & Educ 21, 827–851 (2012). https://doi.org/10.1007/s11191-010-9231-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-010-9231-5

Keywords

Navigation