Skip to main content
Log in

Discovery of factors influencing patent value based on machine learning in patents in the field of nanotechnology

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Patents represent the technological or inventive activity and output across different fields, regions, and time. The analysis of information from patents could be used to help focus efforts in research and the economy; however, the roles of the factors that can be extracted from patent records are still not entirely understood. To better understand the impact of these factors on patent value, machine learning techniques such as feature selection and classification are used to analyze patents in a sample industry, nanotechnology. Each nanotechnology patent was represented by a comprehensive set of numerical features that describe inventors, assignees, patent classification, and outgoing references. After careful design that included selection of the most relevant features, selection and optimization of the accuracy of classification models that aimed at finding most valuable (top-performing) patents, we used the generated models to analyze which factors allow to differentiate between the top-performing and the remaining nanotechnology patents. A few interesting findings surface as important such as the past performance of inventors and assignees, and the count of referenced patents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albert, M. B., Avery, D., Narin, F., & McAllister, P. (1991). Direct validation of citation counts as indicators of industrially important patents. Research Policy, 20, 251–259.

    Article  Google Scholar 

  • Baldini, N., & Grimaldi, R. (2007). To patent or not to patent? A survey of Italian inventors on motivations, incentives, and obstacles to university patenting. Scientometrics, 70, 333–354.

    Article  Google Scholar 

  • Braun, T., Schubert, A., & Zsindely, S. (1997). Nanoscience and nanotechnology on the balance. Scientometrics, 38, 321–325.

    Article  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Article  MATH  Google Scholar 

  • Breitzman, A. F., & Mogee, M. E. (2002). The many applications of patent analysis. Journal of Information Science, 28, 187–205.

    Article  Google Scholar 

  • Carpenter, M. P., Narin, F., & Woolf, P. (1981). Citation rates to technologically important patents. World Patent Information, 3, 160–163.

    Article  Google Scholar 

  • Chen, D., Lin, W. C., & Huang, M. (2007a). Using essential patent index and essential technological strength to evaluate industrial technological innovation competitiveness. Scientometrics, 71, 101–116.

    Google Scholar 

  • Chen, H., Li, X., & Lin, Y. (2007b). Worldwide nanotechnology development: a comparative study of USPTO, EPO, and JPO patents (1976–2004). Journal of Nanoparticle Research, 9, 977–1002.

    Google Scholar 

  • Cohen, W. (1995). Fast effective rule induction. In Proceedings of the twelfth international conference on machine learning (pp. 115–123). San Mateo: Morgan Kaufmann Publishers.

  • Connolly, R. A., & Hirschey, M. (1988). Market value and patents: A Bayesian approach. Economics Letters, 27, 83–87.

    Article  Google Scholar 

  • Debackere, K., Verbeek, A., Luwel, M., & Zimmermann, E. (2002). Measuring progress and evolution in science and technology-II: The multiple uses of technometric indicators. International Journal of Management Reviews, 4, 213–231.

    Article  Google Scholar 

  • Domingos, P. (1999). MetaCost: A general method for making classifiers cost-sensitive. In Proceedings of the fifth international conference on knowledge discovery and data mining (pp. 155–164). New York: ACM Press.

  • Gay, C., & Le Bas, C. (2005). Uses without too many abuses of patent citations or the simple economics of patent citations as a measure of value and flows of knowledge. Economics of Innovation and New Technology, 14, 333–338.

    Article  Google Scholar 

  • Griliches, Z. (1990). Patent statistics as economic indicators: A survey. Journal of Economic Literature, 28, 1661–1707.

    Google Scholar 

  • Gupta, V. K. (1999). Technological trends in the area of fullerenes using bibliometric analysis of patents. Scientometrics, 44, 17–31.

    Article  Google Scholar 

  • Hagedoorn, J., & Cloodt, M. (2003). Measuring innovative performance: Is there an advantage in using multiple indicators? Research Policy, 32, 1365–1379.

    Article  Google Scholar 

  • Hall, B. H., Jaffe, A., & Trajtenberg, M. (2005). Market value and patent citations. RAND Journal of Economics, 36, 16–38.

    Google Scholar 

  • Harhoff, D., Narin, F., Scherer, F. M., & Vopel, K. (1999). Citation frequency and the value of patented innovation. Review of Economics and Statistics, 81, 511–515.

    Article  Google Scholar 

  • Hilario, M. & Kalousis, A. (2000). Quantifying the resilience of inductive classification algorithms. In Proceedings of the 4th European conference on principles of data mining and knowledge discovery (pp. 106–115). France: Lyon.

  • Huang, Z., Chen, H., Chen, Z. K., & Roco, M. C. (2004). International nanotechnology development in 2003: Country, institution and technology field analysis based on USPTO patent database. Journal of Nanoparticle Research, 6, 325–354.

    Article  Google Scholar 

  • Huang, Z., Chen, H., Li, X., & Roco, M. C. (2006). Connecting NSF funding to patent innovation in nanotechnology (2001–2004). Journal of Nanoparticle Research, 8, 859–879.

    Article  Google Scholar 

  • Huang, Z., Chen, H., Yip, A., Ng, G., Guo, F., Chen, Z.-K., et al. (2003). Longitudinal patent analysis for nanoscale science and engineering: Country, institution and technology field. Journal of Nanoparticle Research, 5, 333–363.

    Article  Google Scholar 

  • Hullmann, A. (2007). Measuring and assessing the development of nanotechnology. Scientometrics, 70, 739–758.

    Article  Google Scholar 

  • Hullmann, A., & Meyer, M. (2003). Publications and patents in nanotechnology: An overview of previous studies and the state of the art. Scientometrics, 58, 507–527.

    Article  Google Scholar 

  • John, G. H. & Langley, P. (1995). Estimating continuous distributions in Bayesian classifiers. In Proceedings of the eleventh conference on uncertainty in artificial intelligence (pp. 338–345). San Mateo: Morgan Kaufmann Publishers.

  • Karki, M. (1997). Patent citation analysis: A policy analysis tool. World Patent Information, 19, 269–272.

    Article  Google Scholar 

  • Kononenko, I. (1994). Estimation attributes: analysis and extensions of RELIEF. In Proceedings of the 1994 European conference on machine learning (pp. 171–182). San Mateo: Morgan Kaufmann Publishers.

  • Kostoff, R. N., Koytcheff, R. G., & Lau, C. G. Y. (2007). Global nanotechnology research metrics. Scientometrics, 70, 565–601.

    Article  Google Scholar 

  • Kostoff, R., Stump, J., Johnson, D., Murday, J., Lau, C., & Tolles, W. (2006). The structure and infrastructure of the global nanotechnology literature. Journal of Nanoparticle Research, 8, 301–321.

    Article  Google Scholar 

  • Le Cessie, S., & Van Houwelingen, J. C. (1992). Ridge estimators in logistic regression. Applied Statistics, 41, 191–201.

    Article  MATH  Google Scholar 

  • Lee, L. L., Chan, C. K., Ngaim, M., & Ramakrishna, S. (2006). Nanotechnology patent landscape 2006. Nano, 1(2), 101–113.

    Article  MATH  Google Scholar 

  • Leydesdorff, L., & Meyer, M. (2007). The scientometrics of a Triple Helix of university–industry–government relations. Scientometrics, 70, 207–222.

    Article  Google Scholar 

  • Lo, S.-C. (2008). Patent coupling analysis of primary organizations in genetic engineering research. Scientometrics, 74, 143–151.

    Article  MathSciNet  Google Scholar 

  • Marinova, D., & Mcaleer, M. (2003). Nanotechnology strength indicators: International rankings based on US patents. Nanotechnology, 14, R1–R7.

    Article  Google Scholar 

  • Meyer, M. (2001). Patent citation analysis in a novel field of technology: An exploration of nano-science and nano-technology. Scientometrics, 51, 163–183.

    Article  Google Scholar 

  • Meyer, M. (2007). What do we know about innovation in nanotechnology? Some propositions about an emerging field between hype and path-dependency. Scientometrics, 70, 779–810.

    Article  Google Scholar 

  • Meyer, M., & Persson, O. (1998). Nanotechnology-interdisciplinarity, patterns of collaboration and differences in application. Scientometrics, 42, 195–205.

    Article  Google Scholar 

  • Narin, F. (1993). Technology indicators and corporate strategy. Review of Business, 14, 19–23.

    Google Scholar 

  • Narin, F. (1994). Patent bibliometrics. Scientometrics, 30, 147–155.

    Article  Google Scholar 

  • Narin, F., Breitzman, A. F., & Thomas, P. (2004). Using patent citation indicators to manage a stock portfolio. In H. F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of quantitative science and technology research: The use of publication and patent statistics in studies of S&T systems (pp. 553–568). Netherlands: Springer.

    Google Scholar 

  • Narin, F., & Hamilton, K. S. (1996). Bibliometric performance measures. Scientometrics, 36, 293–310.

    Article  Google Scholar 

  • Quinlan, R. (1993). C4.5: Programs for machine learning. San Mateo: Morgan Kaufmann Publishers.

    Google Scholar 

  • Reitzig, M. (2003). What determines patent value? Insights from the semiconductor industry. Research Policy, 32, 13–26.

    Article  Google Scholar 

  • Rozhkov, S., & Ivantcheva, L. (1998). Scientometrical indicators of national science & technology policy on patent statistics data. World Patent Information, 20, 161–166.

    Article  Google Scholar 

  • Sampat, B. (2004). Examining patent examination: An analysis of examiner and applicant generated prior art. Working Paper, School of Public Policy, Georgia Institute of Technology.

  • Tong, X., & Frame, J. D. (1992). Measuring national technological performance with patent claims data. Research Policy, 23, 133–141.

    Article  Google Scholar 

  • Trajtenberg, M. (1990). A penny for your quotes: Patent citations and the value of innovations. RAND Journal of Economics, 21, 172–187.

    Article  Google Scholar 

  • Trippe, A. J. (2003). Patinformatics: Tasks to tools. World Patent Information, 25, 211–221.

    Article  Google Scholar 

  • Van Looy, B., Debackere, K., Callaert, J., Tussen, R., & Van Leeuwen, T. (2006). Scientific capabilities and technological performance of national innovation systems: An exploration of emerging industrial relevant research domains. Scientometrics, 66, 295–310.

    Article  Google Scholar 

  • Van Someren, M., & Urbancic, T. (2005). Applications of machine learning: Matching problems to tasks and methods. Knowledge Engineering Review, 20, 363–402.

    Article  Google Scholar 

  • Verbeek, A., & Debackere, K. (2006). Patent evolution in relation to public/private R&D investment and corporate profitability: Evidence from the United States. Scientometrics, 66, 279–294.

    Article  Google Scholar 

  • Verbeek, A., Debackere, K., Luwel, M., & Zimmermann, E. (2002). Measuring progress and evolution in science and technology-I: The multiple uses of bibliometric indicators. International Journal of Management Reviews, 4, 179–211.

    Article  Google Scholar 

  • Wallin, J. A. (2005). Bibliometric methods: Pitfalls and possibilities. Basic & Clinical Pharmacology & Toxicology, 97, 261–275.

    Article  Google Scholar 

  • Wang, S. (2007). Factors to evaluate a patent in addition to citations. Scientometrics, 71, 509–522.

    Article  Google Scholar 

  • Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques (2nd ed.). San Francisco: Morgan Kaufman Publishers.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukasz A. Kurgan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bass, S.D., Kurgan, L.A. Discovery of factors influencing patent value based on machine learning in patents in the field of nanotechnology. Scientometrics 82, 217–241 (2010). https://doi.org/10.1007/s11192-009-0008-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-009-0008-z

Keywords

Navigation