Skip to main content
Log in

The lengthening of papers’ life expectancy: a diachronous analysis

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

The aging of scientific has generally been studied using synchronous approaches, i.e., based on references made by papers. This paper uses a diachronous model based on citations received by papers to study the changes in the life expectancy of three corpus of papers: papers from G6 and BRICS countries, papers published in Science, Nature, Physical Review and the Lancet and all papers divided into four broad fields: medical sciences, natural sciences and engineering, social sciences and arts and humanities. It shows that that: (i) life expectancy is extensively different from a corpus to another and may be either finite or infinite, meaning that the corpus would never be obsolete from a mathematical perspective; (ii) life expectancy for scientific literature has lengthened over the 1980–2000 period; (iii) life expectancy of developed countries’ (G6) literature is on average shorter than that of emerging countries (BRICS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. An extensive discussion of the topic can be found in Line (1993) and Line and Sandison (1974).

  2. http://stats.oecd.org/glossary/detail.asp?ID=1530.

References

  • Archambault, É., & Larivière, V. (2009). History of the journal impact factor: Contingencies and consequences. Scientometrics, 79(3), 639–653.

    Article  Google Scholar 

  • Barnett, G. A., Fink, E., & Debusa, M. B. (1989). Mathematical model of academic citation age. Communication Research, 16(4), 510–531.

    Article  Google Scholar 

  • Bouabid, H. (2011). Revisiting citation aging: A model for citation distribution and life-cycle prediction. Scientometrics, 88(1), 199–211.

    Article  Google Scholar 

  • Bouabid, H., & Martin, B. R. (2009). Evaluation of Moroccan research using a bibliometric-based approach: Investigation of the validity of the h-index. Scientometrics, 78(2), 203–217.

    Article  Google Scholar 

  • Burrell, Q. L. (2002). The nth-citation distribution and obsolescence. Scientometrics, 53(3), 309–323.

    Article  Google Scholar 

  • Burton, R. E., & KeblerR, W. (1960). The “half-life” of some scientific and technical literatures. American Documentation, 11(1), 18–22.

    Article  Google Scholar 

  • Cano, V., & Lind, N. C. (1991). Citation life cycles of ten citation classics. Scientometrics, 22(2), 297–312.

    Article  Google Scholar 

  • Egghe, L. (2010). A model showing the increase in time of the average and median reference age and the decrease in time of the Price index. Scientometrics, 82(2), 243–248.

    Article  Google Scholar 

  • Egghe, L., Ravichandra Rao, I. K., & Rousseau, R. (1995). On the influence of production on utilization functions: Obsolescence or increased use? Scientometrics, 34(2), 285–315.

    Article  Google Scholar 

  • Egghe, L., & Rousseau, R. (2000). Aging, obsolescence, impact, growth, and utilization: Definitions and relations. Journal of the American Society for Information Science, 51(11), 1004–1017.

    Article  Google Scholar 

  • Glänzel, W. (2004). Towards a model for diachronous and synchronous citation analyses. Scientometrics, 60(3), 511–522.

    Article  Google Scholar 

  • Gross, P. L. K., & Gross, E. M. (1927). College libraries and chemical education. Science, 66, 385–389.

    Article  Google Scholar 

  • Kay, L., & Shapira, P. (2009). Developing nanotechnology in Latin America. Journal of Nanoparticle Research, 11(2), 259–278.

    Article  Google Scholar 

  • Larivière, V., Archambault, E., & Gingras, Y. (2008). Long-term variations in the aging of scientific literature: From exponential growth to steady-state science (1900–2004). Journal of the American Society for Information Science and Technology, 59(2), 288–296.

    Article  Google Scholar 

  • Leydesdorff, L. (2003). Can networks of journal–journal citations be used as indicators of change in the social sciences? Journal of Documentation, 59(1), 84–104.

    Article  Google Scholar 

  • Line, M. B. (1993). Changes in the use of literature with time: Obsolescence revisited. Library Trends, 41, 665–683.

    Google Scholar 

  • Line, M. B., & Sandison, A. (1974). ‘Obsolescence’ and changes in the use of literature with time. Journal of Documentation, 30(3), 283–350.

    Google Scholar 

  • Nakamoto, H. (1988). Synchronous and dyachronous citation distributions. In L. Egghe & R. Rousseau (Eds.), Informetrics 87/88 (pp. 157–163). Amsterdam: Elsevier.

    Google Scholar 

  • Rafsnider, J. (1975). Complementarity between a use study and a citation study in considering publication practices in physical and social-sciences. Journal of the American Society for Information Science, 26(6), 344–345.

    Article  Google Scholar 

  • Rousseau, R. (1994). Double exponential models for first-citation processes. Scientometrics, 30(1), 213–227.

    Article  Google Scholar 

  • Small, H. G., & Crane, D. (1979). Specialties and disciplines in science and social science: An examination of their structure using citation indexes. Scientometrics, 1(5–6), 445–461.

    Article  Google Scholar 

  • Sotudeh, H. (2012). How sustainable a scientifically developing country could be in its specialties? The case of Iran’s publications in SCI in the 21st century compared to 1980s. Scientometrics, 91, 231–243.

    Article  Google Scholar 

  • Stinson, E. R., & Lancaster, F. W. (1987). Synchronous versus diachronous methods in the measurement of obsolescence by citation studies. Journal of Information Science, 13, 65–74.

    Article  Google Scholar 

  • Szava-Kovats, E. (2002). Unfounded attribution of the “half-life” index-number of literature obsolescence to Burton and Kebler: A literature science study. Journal of the American Society for Information Science and Technology, 53(13), 1098–1105.

    Article  Google Scholar 

  • Vanclay, J. K. (2012). Impact factor: Outdated artefact or stepping-stone to journal certification? Scientometrics, 92(2), 211–238.

    Article  Google Scholar 

  • Yang, S., Ma, F., Song, Y., & Junping, Q. (2010). A longitudinal analysis of citation distribution breadth for Chinese scholars. Scientometrics, 85(3), 755–765.

    Article  Google Scholar 

  • Yu, G., & Li, Y. J. (2007). Parameter identification of the observed citation distribution. Scientometrics, 71(2), 339–348.

    Article  Google Scholar 

  • Zhou, P., & Leydesdorff, L. (2006). The emergence of China as a leading nation in science. Research Policy, 35, 83–104.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Bouabid.

Appendix

Appendix

See Tables 1, 2, 3, 4 and 5

Table 1 Citations distributions of countries, journals and fields for the time series: 1980, 1985, 1990 and 2000
Table 2 R² of the model to the observed data of SCI for countries for journals and fields
Table 3 Parameters results of the model for countries
Table 4 parameters results of the model for journals
Table 5 Parameters results of the model for scientific fields

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouabid, H., Larivière, V. The lengthening of papers’ life expectancy: a diachronous analysis. Scientometrics 97, 695–717 (2013). https://doi.org/10.1007/s11192-013-0995-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-013-0995-7

Keywords

Navigation