Skip to main content
Log in

Using machine learning techniques for rising star prediction in co-author network

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Online bibliographic databases are powerful resources for research in data mining and social network analysis especially co-author networks. Predicting future rising stars is to find brilliant scholars/researchers in co-author networks. In this paper, we propose a solution for rising star prediction by applying machine learning techniques. For classification task, discriminative and generative modeling techniques are considered and two algorithms are chosen for each category. The author, co-authorship and venue based information are incorporated, resulting in eleven features with their mathematical formulations. Extensive experiments are performed to analyze the impact of individual feature, category wise and their combination w.r.t classification accuracy. Then, two ranking lists for top 30 scholars are presented from predicted rising stars. In addition, this concept is demonstrated for prediction of rising stars in database domain. Data from DBLP and Arnetminer databases (1996–2000 for wide disciplines) are used for algorithms’ experimental analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://academic.research.microsoft.com/.

  2. Co-author Path and Graph in Microsoft Academic Search.

References

  • Bermejo, P., Gamez, J. A., & Puerta, J. M. (2014). Speeding up incremental wrapper feature subset selection with Naive Bayes classifier. Knowledge-Based Systems, 55, 140–147.

    Article  Google Scholar 

  • Chen, J., Huang, H., Tian, S., & Qu, Y. (2009). Feature selection for text classification with Naïve Bayes. Expert Systems with Applications, 36(3), 5432–5435.

    Article  Google Scholar 

  • Chrysos, G., Dagritzikos, P., Papaefstathiou, I., & Dollas, A. (2013). HC-CART: A parallel system implementation of data mining classification and regression tree (CART) algorithm on a multi-FPGA system. ACM Transactions on Architecture and Code Optimization, 9(4), 47.

    Article  Google Scholar 

  • Constantinou, A. C., Fenton, N. E., & Neil, M. (2012). pi-football: A Bayesian network model for forecasting Association Football match outcomes. Knowledge-Based Systems, 36, 322–339.

    Article  Google Scholar 

  • Cui, X., Afify, M., Gao, Y., & Zhou, B. (2013). Stereo hidden Markov modeling for noise robust speech recognition. Computer Speech & Language, 27(2), 407–419.

    Article  Google Scholar 

  • Cuxac, P., Lamirel, J.-C., & Bonvallot, V. (2013). Efficient supervised and semi-supervised approaches for affiliations disambiguation. Scientometrics, 97(1), 47–58.

    Article  Google Scholar 

  • Daud, A., Abbasi, R., & Muhammad, F. (2013). Finding rising stars in social networks. Database Systems for Advanced Applications (LNCS), 7825, 13–24.

    Google Scholar 

  • Daud, A., Li, J., Zhou, L., & Muhammad, F. (2010). Temporal expert finding through generalized time topic modeling. Knowledge-Based Systems (KBS), 23(6), 615–625.

    Article  Google Scholar 

  • Fakhari, A., & Moghadam, A. M. E. (2013). Combination of classification and regression in decision tree for multi-labeling image annotation and retrieval. Applied Soft Computing, 13(2), 1292–1302.

    Article  Google Scholar 

  • Farid, D. M., Zhang, L., Rahman, C. F., Hossain, M. A., & Strachan, R. (2014). Hybrid decision tree and naïve Bayes classifiers for multi-class classification tasks. Expert Systems with Applications, 41(4) Part 2, 1937–1946.

  • Gu, F., Zhang, H., & Zhu, D. (2013). Blind separation of non-stationary sources using continuous density hidden Markov models. Digital Signal Processing, 23(5), 1549–1564.

    Article  MathSciNet  Google Scholar 

  • Guns, R., & Rousseau, R. (2014). Recommending research collaborations using link prediction and random forest classifiers. Scientometrics,. doi:10.1007/s11192-013-1228-9.

    Google Scholar 

  • Huang, S., Yang, B., Yan, S., & Rousseau, R. (2013). Institution name disambiguation for research assessment. Scientometrics,. doi:10.1007/s11192-013-1214-2.

    Google Scholar 

  • Kao, L. J., Chiu, C. C., & Chiu, F. Y. (2013). A Bayesian latent variable model with classification and regression tree approach for behavior and credit scoring. Knowledge-Based Systems, 36, 245–252.

    Article  Google Scholar 

  • Li, Z., Fang, H., & Xia, L. (2014). Increasing mapping based hidden Markov model for dynamic process monitoring and diagnosis. Expert Systems with Applications, 41(2), 744–751.

    Article  Google Scholar 

  • Li, X. K., Foo, C. S., Tew, K. L., & Ng, S. K. (2009).Searching for rising stars in bibliography networks. In Proceedings of the 14th international conference on database systems for advanced applications (pp. 288–292).

  • Loh, W. J. (2011). Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1), 14–23.

    Google Scholar 

  • López-Cruz, P. L., Larrañaga, P., DeFelipe, J., & Bielza, C. (2014). Bayesian network modeling of the consensus between experts: An application to neuron classification. International Journal of Approximate Reasoning, 55(1), 3–22.

    Article  MathSciNet  Google Scholar 

  • Ma, Z., Sun, A., & Cong, G. (2013). On predicting the popularity of newly emerging hashtags in Twitter. Journal of the American Society for Information Science and Technology, 64(7), 1399–1410.

    Article  Google Scholar 

  • Mascaro, S., Nicholso, A. E., & Korb, K. B. (2014). Anomaly detection in vessel tracks using Bayesian networks. International Journal of Approximate Reasoning, 55(1), 84–98.

    Article  Google Scholar 

  • McCallum, A., Freitag, D., & Pereira, F. C. (2000). Maximum entropy Markov models for information extraction and segmentation. In Proceedings of the seventeenth international conference on machine learning (pp. 591–598). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

  • Orman, L. V. (2013). Bayesian inference in trust networks. ACM Transactions on Management Information Systems (TMIS), 4(2), Article No. 7. New York, USA: ACM.

  • Ren, F., & Kang, X. (2013). Employing hierarchical Bayesian networks in simple and complex emotion topic analysis. Computer Speech & Language, 27(4), 943–968.

    Article  Google Scholar 

  • Santos, R. L. T., Macdonald, C., & Ounis, I. (2013). Learning to rank query suggestions for adhoc and diversity search. Information Retrieval, 16(4), 429–451.

    Article  Google Scholar 

  • Sekercioglu, C. H. (2008). Quantifying co-author contributions. Science, 322, 371.

  • Song, I. J., & Cho, S. B. (2013). Bayesian and behavior networks for context-adaptive user interface in a ubiquitous home environment. Expert Systems with Applications, 40(5), 1827–1838.

    Article  Google Scholar 

  • Speybroeck, N. (2012). Classification and regression trees. International Journal of Public Health., 57(1), 243–246.

    Article  Google Scholar 

  • Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., & Su, Z. (2008). Arnetminer: Extraction and mining of academic social networks. In Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 990–998).

  • Tsatsaronis, G., Varlamis, I., & Norvag, K. (2011). How to become a group leader? Or modeling author types based on graph mining. LNCS, 6966, 15–26.

    Google Scholar 

  • Wang, G. A., Jiao, J., Abrahams, A. S., Fan, W., & Zhang, Z. (2013). Expert rank: A topic-aware expert finding algorithm for online knowledge communities. Decision Support Systems, 54(3), 1442–1451.

    Article  Google Scholar 

  • Yan, R., Huang, C., Tang, J., Zhang, Y., & Li, X. (2012). To better stand on the shoulder of giants. In JCDL ‘12 Proceedings of the 12th ACM/IEEE-CS joint conference on Digital Libraries New York (pp. 51–60).

  • Zhang, G., Ding, Y., & Milojevic, S. (2013). Citation content analysis (CCA): A method for syntactic and semantic analysis of citation content. Journal of the American Society for Information Science and Technology, 64(7), 1490–1503.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Daud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daud, A., Ahmad, M., Malik, M.S.I. et al. Using machine learning techniques for rising star prediction in co-author network. Scientometrics 102, 1687–1711 (2015). https://doi.org/10.1007/s11192-014-1455-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-014-1455-8

Keywords

Navigation