Skip to main content
Log in

A methodology for technology trend monitoring: the case of semantic technologies

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

This paper introduces a systematic technology trend monitoring (TTM) methodology based on an analysis of bibliometric data. Among the key premises for developing a methodology are: (1) the increasing number of data sources addressing different phases of the STI development, and thus requiring a more holistic and integrated analysis; (2) the need for more customized clustering approaches particularly for the purpose of identifying trends; and (3) augmenting the policy impact of trends through gathering future-oriented intelligence on emerging developments and potential disruptive changes. Thus, the TTM methodology developed combines and jointly analyzes different datasets to gain intelligence to cover different phases of the technological evolution starting from the ‘emergence’ of a technology towards ‘supporting’ and ‘solution’ applications and more ‘practical’ business and market-oriented uses. Furthermore, the study presents a new algorithm for data clustering in order to overcome the weaknesses of readily available clusterization tools for the purpose of identifying technology trends. The present study places the TTM activities into a wider policy context to make use of the outcomes for the purpose of Science, Technology and Innovation policy formulation, and R&D strategy making processes. The methodology developed is demonstrated in the domain of “semantic technologies”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. http://carrot2.org.

  2. The priority areas include Information and Communication Technologies, Living Systems and Biotechnologies, Nanotechnologies, Transportation and Aerospace Technologies, Technologies for the Rational Use of Natural Resources, and Energy Efficiency and Energy Saving Technologies.

  3. http://issek.hse.ru/trendletter/. Last visited on October 27, 2015.

  4. http://www.hse.ru/data/2014/03/03/1330240475/Foresight%202030.pdf. Last visited on October 27, 2015.

References

  • Abraham, B. P., & Moitra, S. D. (2001). Innovation assessment through patent analysis. Technovation, 21(4), 245–252.

    Article  Google Scholar 

  • Antón, P. S., Silberglitt, R., & Schneider, J. (2001). The global technology revolution: Bio/nano/materials trends and their synergies with information technology by 2015. Santa Monica, CA: RAND.

    Google Scholar 

  • Battelle. (2014). Battelle database. http://www.battelle.org. Last visited on February 3, 2014.

  • Blei, D., & Lafferty, J. (2007). A correlated topic model of science. Annals of Applied Statistics, 1(1), 17–35.

    Article  MathSciNet  MATH  Google Scholar 

  • Campbell, R. S. (1983). Patent trends as a technological forecasting tool. World Patent Information, 5(3), 137–143.

    Article  Google Scholar 

  • Chao, C.-C., Yang, J.-M., & Jen, W.-Y. (2007). Determining technology trends and forecasts of RFID by a historical review and bibliometric analysis from 1991 to 2005. Technovation, 27(5), 268–279.

    Article  Google Scholar 

  • Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359–377.

    Article  Google Scholar 

  • Cobo, M. J., Lopez-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the fuzzy sets theory field. Journal of Informetrics, 5(1), 146–166.

    Article  MATH  Google Scholar 

  • Corrocher, N., Malerba, F., & Montobbio, F. (2003). The emergence of new technologies in the ICT field: Main actors, geographical distribution and knowledge sources. TENIA project. http://eco.uninsubria.it/dipeco/quaderni/files/QF2003_37.pdf. Last visited on February 3, 2014.

  • Daim, T. U., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change, 73(8), 981–1012.

    Article  Google Scholar 

  • Deloitte. (2012). Tech trends 2012: Elevate IT for digital business. http://www.deloitte.com/assets/Dcom-UnitedStates/Local%20Assets/Documents/us_cons_techtrends2012_013112.pdf. Last visited on February 3, 2014.

  • Dereli, T., & Durmusoglu, A. (2009). A trend-based patent alert system for technology watch. Journal of Scientific and Industrial Research, 68(8), 674–679.

    Google Scholar 

  • Fraunhofer ISI. (2014). Emerging technologies. http://www.isi.fraunhofer.de/isi-en/t/index.php. Last visited on February 3, 2014.

  • Gartner. (2013). Top 10 strategic technology trends for 2013. http://www.gartner.com/technology/research/top-10-technology-trends. Last visited on February 3, 2014.

  • Griffiths, T., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National Academy of Sciences, 101(1), 5228–5235.

    Article  Google Scholar 

  • Guo, H., Weingart, S., & Borner, K. (2011). Mixed-indicators model for identifying emerging research areas. Scientometrics, 89(1), 421–435.

    Article  Google Scholar 

  • IBM. (2013). IBM five in five. http://www.ibm.com/smarterplanet/us/en/ibm_predictions_for_future/ideas/index.html. Last visited on February 3, 2014.

  • IEA. (2013). Tracking clean energy progress 2013. http://www.iea.org/publications/TCEP_web.pdf. Last visited on February 3, 2014.

  • iKNOW. (2014). iKNOW database. http://community.iknowfutures.eu. Last visited on February 3, 2014.

  • ITU. (2014). Technology watch. http://www.itu.int/en/ITU-T/techwatch/Pages/default.aspx. Last visited on February 3, 2014.

  • Kajikawa, Y., Yoshikawa, J., Takeda, Y., & Matsushima, K. (2008). Tracking emerging technologies in energy research: Toward a roadmap for sustainable energy. Technological Forecasting and Social Change, 75(6), 771–782.

    Article  Google Scholar 

  • Kim, Y. G., Suh, J. H., & Park, S. C. (2008). Visualization of patent analysis for emerging technology. Expert Systems with Applications, 34(3), 1804–1812.

    Article  Google Scholar 

  • Kim, Y., Tian, Y., Jeong, Y., Jihee, R., & Myaeng, S.-H. (2009). Automatic discovery of technology trends from patent text. In Proceedings of the 2009 ACM symposium on applied computing (pp. 1480–1487). http://ir.kaist.ac.kr/papers/2008/20081025_2009_SAC_Camera-ready.pdf. Last visited on February 3, 2014.

  • Kostoff, R. N. (1999). Science and technology innovation. Technovation, 19(10), 593–604.

    Article  Google Scholar 

  • Kostoff, R. N. (2003). Science and technology text mining: Global technology watch, office of naval research, technical report. http://www.dtic.mil/get-tr-doc/pdf?AD=ADA415863. Last visited on February 3, 2014.

  • Kostoff, R. N., Boylan, R., & Simon, G. R. (2004). Disruptive technology roadmaps. Technological Forecasting and Social Change, 71(1–2), 141–159.

    Article  Google Scholar 

  • Kostoff, R. N., Briggs, M. B., Solka, J. L., & Rushenberg, R. L. (2008). Literature-related discovery (LRD): Methodology. Technological Forecasting and Social Change, 75(2), 186–202.

    Article  Google Scholar 

  • Kostoff, R. N., Eberhart, H. J., & Toothman, D. R. (1997). Database tomography for information retrieval. Journal of Information Science, 23(4), 301–311.

    Article  Google Scholar 

  • Kummamuru, K., Dhawale, A., & Krishnapuram, R. (2003). Fuzzy co-clustering of documents and keywords. In Proceedings of the 12th IEEE international conference on the fuzzy systems (Vol. 2, pp. 772–777).

  • Kuznetsov, S. (2001). Machine learning on the basis of formal concept analysis. Automation and Remote Control, 62(10), 1543–1564.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, H.-J., Lee, S., & Yoon, B. (2011). Technology clustering based on evolutionary patterns: The case of information and communications technologies. Technological Forecasting and Social Change, 78(6), 953–967.

    Article  Google Scholar 

  • Lee, S., Yoon, B., & Park, Y. (2009). An approach to discovering new technology opportunities: Keyword-based patent map approach. Technovation, 29(6–7), 481–497.

    Article  Google Scholar 

  • Lux Research. (2014). Lux research database. http://www.luxresearchinc.com. Last visited on February 3, 2014.

  • Martino, J. P. (2003). A review of selected recent advances in technological forecasting. Technological Forecasting and Social Change, 70(8), 719–733.

    Article  Google Scholar 

  • Microsoft-Fujitsu. (2011). Key ICT trends and priorities (Vol. 1). http://download.microsoft.com/documents/Australia/InsightsQuarterly/IQ_IG%20Full%20Report. Last visited on February 3, 2014.

  • Morris, S., DeYong, C., Wu, Z., Salman, S., & Yemenu, D. (2002). DIVA: A visualization system for exploring document databases for technology forecasting. Computers and Industrial Engineering, 43(4), 841–862.

    Article  Google Scholar 

  • Mrakotsky-Kolm, E., & Soderlind, G. (2009). Final recommendations towards a methodology for technology watch at EU level. STACCATO Deliverable 2.2.1. http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/12930/1/reqno_jrc50348_staccato%20tech%20watch.pdf. Last visited on February 3, 2014.

  • NISTEP. (2010). The 9th science and technology foresight. National Institute of Science and Technology Policy, NISTEP report no 140 ‘The 9th Delphi Survey’. March 2010. http://www.nistep.go.jp/achiev/sum/eng/rep140e/pdf/rep140se.pdf. Last visited on February 3, 2014.

  • NRC. (2005). Avoiding surprise in an era of global technology advances. Committee on Defense Intelligence Agency Technology Forecasts and Reviews, National Research Council. http://www.nap.edu/catalog.php?record_id=11286. Last visited on February 3, 2014.

  • OECD. (2007). Infrastructure to 2030 (volume 2): Mapping policy for electricity, water and transport. http://www.oecd.org/futures/infrastructureto2030/40953164.pdf. Last visited on February 3, 2014.

  • ONR. (2014). Office of Naval Research website. http://www.onr.navy.mil. Last visited on February 3, 2014.

  • Palomino, M. A., Vincenti, A., & Owen, R. (2013). Optimising web-based information retrieval methods for horizon scanning. Foresight, 15(3), 159–176.

    Article  Google Scholar 

  • Porter, A. L. (2005). QTIP: Quick technology intelligence processes. Technological Forecasting and Social Change, 72(9), 1070–1081.

    Article  Google Scholar 

  • Porter, A. L., & Cunningham, S. W. (2005). Tech mining: Exploiting new technologies for competitive advantage. New York, NY: Wiley.

    Google Scholar 

  • Porter, A. L., & Newman, N. C. (2011). Mining external R&D. Technovation, 31(4), 171–176.

    Article  Google Scholar 

  • Ruotsalainen, L. (2008). Data mining tools for technology and competitive intelligence. Espoo 2008. VTT Tiedotteita—Research Notes 2451.

  • Saritas, O. (2013). Systemic foresight methodology. In D. Meissner, L. Gokhberg, & A. Sokolov (Eds.), Foresight and science, technology and innovation policies: Best practices (pp. 83–117). Berlin: Springer.

    Chapter  Google Scholar 

  • Shell. (2007). The Shell Global Scenarios to 2025. The future business environment: trends, trade-offs and choices. http://www-static.shell.com/content/dam/shell/static/aboutshell/downloads/our-strategy/shell-global-scenarios/exsum-23052005.pdf. Last visited on February 3, 2014.

  • Shibata, N., Kajikawa, Y., & Sakata, I. (2010). Extracting the commercialization gap between science and technology—Case study of a solar cell. Technological Forecasting and Social Change, 77(7), 1147–1155.

    Article  Google Scholar 

  • Shibata, N., Kajikawa, Y., & Sakata, I. (2011). Detecting potential technological fronts by comparing scientific papers and patents. Foresight, 13(5), 51–60.

    Article  Google Scholar 

  • Shibata, N., Kajikawa, Y., Takeda, Y., & Matsushima, K. (2008). Detecting emerging research fronts based on topological measures in citation networks of scientific publications. Technovation, 28(11), 758–775.

    Article  Google Scholar 

  • Silberglitt, R., Antón, P. S., Howell, D. R., & Wong, A. (2006). The global technology revolution 2020, In-depth analysis: Bio/nano/materials/information trends, drivers, barriers and social applications. http://www.rand.org/content/dam/rand/pubs/technical_reports/2006/RAND_TR303.pdf. Last visited on February 3, 2014.

  • Smalheiser, N. R. (2001). Predicting emerging technologies with the aid of text-based data mining: The micro approach. Technovation, 21(10), 689–693.

    Article  Google Scholar 

  • Steyvers, M., Griffiths, T. (2007). Probabilistic topic models. In D. McNamara, S. Dennis, W. Kintsch (Eds.), Handbook of latent semantic analysis. Psychology Press, Hove. ISBN 978-0-8058-5418-3.

  • TechCast. (2014). TechCast database. http://www.techcast.org. Last visited on February 3, 2014.

  • TrendHunter. (2014). TrendHunter database. http://www.trendhunter.com. Last visited on February 3, 2014.

  • Tseng, Y. H., Lin, Ch. J., & Lin, Y. I. (2007). Text mining techniques for patent analysis. Information Processing and Management, 43(5), 1216–1247.

    Article  Google Scholar 

  • UK Government Office for Science. (2010). Technology and innovation futures: UK growth opportunities for the 2020s. http://www.northamptonshireobservatory.org.uk/docs/doc10-1252-technology-and-innovation-futures[1]101105145732.pdf. Last visited on February 3, 2014.

  • Upham, S. P., & Small, H. (2010). Emerging research fronts in science and technology: Patterns of new knowledge development. Scientometrics, 83(1), 15–38.

    Article  Google Scholar 

  • Wang, M. Y., Chang, D. S., & Kao, Ch.-H. (2010). Identifying technology trends for R&D planning using TRIZ and text mining. R&D Management, 40(5), 491–509.

    Article  Google Scholar 

  • Wouters, C., Dillon, T., Rahayu, W., & Chang, E. (2002). A practical walkthrough of the ontology derivation rules. In R. Cicchetti et al. (Eds.), DEXA 2002, LNCS 2453 (pp. 259–268).

  • Yoon, B., & Park, Y. (2004). A text-mining-based patent network: Analytical tool for high-technology trend. Journal of High Technology Management Research, 15(1), 37–50.

    Article  MathSciNet  Google Scholar 

  • Zhu, D., & Porter, A. L. (2002). Automated extraction and visualization of information for technological intelligence and forecasting. Technological Forecasting and Social Change, 69(5), 495–506.

    Article  Google Scholar 

  • Z-Punkt. (2014). Trend Radar 2020. http://www.z-punkt.de/trend-radar2020.html. Last visited on February 3, 2014.

Download references

Acknowledgments

The article was prepared within the framework of the Basic Research Program at the National Research University Higher School of Economics (HSE) and supported within the framework of a subsidy by the Russian Academic Excellence Project ‘5-100’. The authors are grateful for the immense help of Sergey Kuznetsov’s team (Higher School of Economics) in the development of clustering algorithms and Mr. Evgeny Klochickin (Ph.D. candidate at the Manchester Institute of Innovation Research Manchester Business School) in the process of extracting and analysing the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Sokolova.

Additional information

Oleg Ena, Nadezhda Mikova, Ozcan Saritas and Anna Sokolovaequal have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ena, O., Mikova, N., Saritas, O. et al. A methodology for technology trend monitoring: the case of semantic technologies. Scientometrics 108, 1013–1041 (2016). https://doi.org/10.1007/s11192-016-2024-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-016-2024-0

Keywords

Navigation