Skip to main content
Log in

On the effect of lava viscosity on the magnetic fabric intensity in alkaline volcanic rocks

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The degree of the anisotropy of magnetic susceptibility (AMS) of basaltic rocks, as is known from the large AMS database of these rocks, is generally very low, while in more acidic volcanic rocks such as andesites, trachytes and phonolites, which have been investigated much less frequently, it is in general much higher. In the present study, the AMS of various volcanic rocks including trachytic and phonolitic rocks was investigated in the Tertiary volcanic region of the České středohoří Mts. Viscosities of the respective lavas were calculated from the chemical composition using the KWARE program. A rough correlation was found between the degree of AMS and lava viscosities, probably resulting from different mechanisms orienting the magnetic minerals. In basaltic lava flows this mechanism is traditionally considered to be of a hydrodynamic nature, in trachytic and phonolitic bodies it can also be represented by quasi-intrusive flows resembling, at least partially, ductile flow deformation. This is in agreement with the AMS data predicted by the viscous (liquid flow) and line/plane (ductile flow) models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bilby B.A., Eshelby J.D. and Kundu A.K., 1975. The change of shape of a viscous ellipsoidal region embedded in a slowly deforming matrix having a different viscosity. Tectonophysics, 28, 265–274.

    Article  Google Scholar 

  • Cajz V., Vokurka K., Balogh K., Lang M. and Ulrych J., 1999. The České Středohoří Mts.: volcanostratigraphy and geochemistry. Geolines, 9, 21–28.

    Google Scholar 

  • Callot J.P., Geoffroy L., Aubourg C., Pozzi J.P. and Mege D., 2001. Magma flow directions of shallow dykes from the East Greenland volcanic margin inferred from magnetic fabric studies. Tectonophysics, 335, 313–329.

    Article  Google Scholar 

  • Canon-Tapia E., Walker G.P.L. and Hererro-Bervera E., 1995. Magnetic fabric and flow direction in basaltic Pahoehoe lava of Xitle Volcano, Mexico. J. Volcanol. Geotherm. Res., 65, 249–263.

    Article  Google Scholar 

  • Ellwood B.B., 1978. Flow and emplacement direction determined for selected basaltic bodies using magnetic susceptibility anisotropy measurements. Earth Planet. Sci. Lett., 41, 254–264.

    Article  Google Scholar 

  • Ellwood B.B., 1982. Estimates of flow direction for calc-alkaline welded tuffs and paleomagnetic data reliability from anisotropy of magnetic susceptibility measurements: central San Juan Mountains, southwest Colorado. Earth Planet. Sci. Lett., 59, 303–314.

    Article  Google Scholar 

  • Ellwood B.B. and Fisk M.R., 1977. Anisotropy of magnetic susceptibility variations in a single Icelandic columnar basalt. Earth Planet..Sci. Lett., 35, 116–122.

    Article  Google Scholar 

  • Ernst R.E., 1990. Magma flow directions in two mafic Proterozoic dyke swarms of the Canadian Shield as estimated using anisotropy of magnetic susceptibility data. In: A.J. Parker, P.C. Rickwood and D.H. Tucker (Eds.), Mafic Dykes and Emplacement Mechanisms, Balkema, Rotterdam, 231–235.

    Google Scholar 

  • Gay N.C., 1968. The motion of rigid particles embedded in a viscous fluid during pure shear deformation of the fluid. Tectonophysics, 5, 81–88.

    Article  Google Scholar 

  • Geoffroy L., Callot J.P., Aubourg C. and Moreira M., 2002. Magnetic and plagioclase linear fabric discrepancy in dykes: a new way to define the flow vector using magnetic foliation. Terra Nova, 14, 183–190.

    Article  Google Scholar 

  • Halvorsen E., 1974. The magnetic fabric of some dolerite intrusions, NE. Spitsbergen; implication for their mode of emplacement. Earth Planet. Sci. Lett., 21, 127–133.

    Article  Google Scholar 

  • Hejtman B., 1957. Systematická petrografie vyvřelých hornin (Systematic Petrography of Igneous Rocks). Nakl. ČSAV, Praha, Czech Republic (in Czech).

  • Herrero-Bervera E., Walker G.P.L., Canon-Tapia E. and Garcia M.O., 2001. Magnetic fabric and inferred flow direction of dikes, conesheets and sill swarms, Isle of Skye, Scotland. J. Volcanol. Geotherm. Res., 106, 195–210.

    Article  Google Scholar 

  • Henry B., Cams P. and Plenier G., 2003. Magnetic fabric of Miocene lavas in the Jeanne d’Arc peninsula (Kerguelen islands). J. Volcanol. Geotherm. Res., 127, 153–164.

    Article  Google Scholar 

  • Hibsch J.E., 1899. Geologische Karte des Böhmischen Mittelgebirges. Blatt II (Ronstock-Bodenbach), Wien, Austria (in German).

  • Hibsch J.E., 1900. Beiträge zur Geologie des Böhmischen Mittelgebirges II. Tschermaks mineral. petrog. Mitt., 19, 489–497 (in German).

    Article  Google Scholar 

  • Hibsch J.E., 1911. Geologische Karte des Böhmischen Mittelgebirges, Blatt VI (Wernstadt-Zinkenstein) nebst Erläuterungen. Tschermaks Min. und Petr. Mitteilungen, XXIX Band, Heft 5 (in German).

  • Hibsch J.E., 1926. Erläuterungen zur Geologischen Űbersichtskarte des Böhmischen Mittelgebirges und der unmittelbar angrenzten Gebiete. Tetschen, 158 pp. (in German).

  • Hibsch J.E., 1930. Geologischer Führer durch das Böhmische Mittelgebirge. Bornträger, Berlin, 363 pp. (in German).

    Google Scholar 

  • Hrouda F., 1982. Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys. Surv., 5, 37–82.

    Article  Google Scholar 

  • Hrouda F., 1985. The magnetic fabric in the Brno massif. Sbor. geol. věd, UG, 89–112.

  • Hrouda F., 1993. Theoretical models of magnetic anisotropy to strain relationship revisited. Phys. Earth Planet. Inter., 77, 237–249.

    Article  Google Scholar 

  • Hrouda F., 1994. A technique for the measurement of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 Kappabridge. Geophys. J. Int., 118, 604–612.

    Article  Google Scholar 

  • Hrouda F., 2003. Indices for numerical characterization of the alteration processes of magnetic minerals taking place during investigation of temperature variation of magnetic susceptibility. Stud. Geophys. Geod., 47, 847–861.

    Article  Google Scholar 

  • Hrouda F. and Lanza R., 1989. Magnetic anisotropy in the Biella and Traversella stocks (Periadriatic Line): implications for the emplacement mode. Phys. Earth Planet. Inter., 56, 337–348.

    Article  Google Scholar 

  • Hrouda F., Jelínek V. and Hrušková L., 1990. A package of programs for statistical evaluation of magnetic anisotropy data using IBM-PC computers. EOS Trans AGU, 71, 1289.

    Google Scholar 

  • Hrouda F., Melka R. and Schulmann K., 1994. Periodical changes in fabric intensity during simple shear deformation and its implications for magnetic susceptibility anisotropy of sedimentary and volcanic rocks. Acta Univ. Carol. Geologica, 38, 37–56.

    Google Scholar 

  • Hrouda F., Jelínek V. and Zapletal K., 1997. Refined technique for susceptibility resolution into ferromagnetic and paramagnetic components based on susceptibility temperature-variation measurement. Geophys. J. Int., 129, 715–719.

    Article  Google Scholar 

  • Incoronato A., Addison F.T., Tarling D.H., Nardi G. and Pescatore T., 1983. Magnetic fabric investigations of pyroclastic deposits from Phlegrean Fields, southern Italy. Nature, 306, 461–463.

    Article  Google Scholar 

  • Jeffery G. B., 1922. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. London, 102, 161–179.

    Google Scholar 

  • Jelínek V., 1978. Statistical processing of magnetic susceptibility measured on groups of specimens. Stud. Geophys. Geod., 22, 50–62.

    Article  Google Scholar 

  • Jelínek 1981. Characterization of magnetic fabric of rocks. Tectonophysics,79, T63–T67.

    Article  Google Scholar 

  • Jelínek V. and Pokorný J., 1997. Some new concepts in technology of transformer bridges for measuring susceptibility anisotropy of rocks. Phys. Chem. Earth, 22, 179–181.

    Article  Google Scholar 

  • Khan M.A., 1962. The anisotropy of magnetic susceptibility of some igneous and metamorphic rocks. J. Geophys. Res., 67, 2873–2885.

    Article  Google Scholar 

  • Knight M.D. and Walker G.P.L., 1988. Magma flow directions in dikes of the Koolan Complex, Oahu, determined from magnetic fabric studies. J. Geophys. Res., 93, 4308–4319.

    Google Scholar 

  • Knight M.D., Walker G.P.L., Ellwood B.B. and Diehl J.F., 1986. Stratigraphy, paleomagnetism, and magnetic fabric of the Toba tuffs: Constraints on the sources and eruptive styles. J. Geophys. Res., 91, 355–382.

    Google Scholar 

  • Kolofíková O., 1976. Geological interpretation of measurement of magnetic properties of basalts on example of the Chřibský les lava flow of the Velký Roudný volcano (Nízký Jeseník Mts.). Čas. mineral. geol., 21, 387–396 (in Czech).

    Google Scholar 

  • Kopecký L., 1966. Tertiary volcanics. In: J. Svododa et al., Regional Geology of Czechoslovakia, Part I, The Bohemian Massif, Academia, Prague, Czech Republic, 554–580.

    Google Scholar 

  • Kropáček V., 1976. Changes of the magnetic properties of Tertiary alkaline basalts under oxidation of titanomagnetites. Publs. Inst. Geoph. Pol. Ac. Sci., C-1(102), 75–85.

    Google Scholar 

  • Kropáček V. and Pokorná Z., 1973. Magnetische Eigenschaften basischer neovulkanischer Gesteine der Boehmischen Masse und ihre Zusammenhaenge mit petrologischen Charakteristiken. Geof. Sborník, 21, 287–348 (in German).

    Google Scholar 

  • Le Bas M.J., Le Maitre R.W., Streckeisen A. and Zanettin B., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol., 27, 745–750.

    Article  Google Scholar 

  • Le Maitre, R.W. et al. (Eds.), 2002. Igneous Rocks. Classification and Glossary Terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, Casmbridge, U.K., 236 pp.

    Google Scholar 

  • MacDonald W.D. and Palmer H.C., 1990. Flow directions in ash-flow tuffs: a comparison of geological and magnetic susceptibility measurements, Tshirege member (upper Bandelier Tuff), Valles caldera, New Mexico, USA. Bull. Volcanol., 53, 45–59.

    Article  Google Scholar 

  • Macháček V.A. and Shrbený O., 1973. Geochemistry of trachytic rocks of the České středohoří Mts. Čas. Mineral. Geol., 18(2), 131–161.

    Google Scholar 

  • March A., 1932. Mathemathische Theorie der Regelung nach der Korngestalt bei Affiner Deformation. Z. Kristallogr., 81, 285–298 (in German).

    Article  Google Scholar 

  • McGill R., Tukey J.W. and Larsen W.A., 1978. Variation of box plots. Am. Stat., 32, 12–16.

    Google Scholar 

  • Nagata T., 1961. Rock Magnetism. Maruzen, Tokyo.

    Google Scholar 

  • Osborn J.A., 1945. Demagnetizing factors of the general ellipsoid. Phys. Rev., 67, 351–357.

    Article  Google Scholar 

  • Owens W.H., 1974. Mathematical model studies on factors affecting the magnetic anisotropy of deformed rocks. Tectonophysics, 24, 115–131.

    Article  Google Scholar 

  • Palmer H.C., MacDonald W.D. and Hayatsu A., 1991. Magnetic, structural and geochronologic evidence bearing on volcanic sources and Oligocene deformation of ash flow tuffs, Northeast Nevada. J. Geophys. Res., 96, 2185–2202.

    Article  Google Scholar 

  • Parma J., Hrouda F., Pokorný J., Wohlgemuth J., Suza P., Šilinger P. and Zapletal K., 1993. A technique for measuring temperature dependent susceptibility of weakly magnetic rocks. EOS Trans. AGU Suppl., 113.

  • Petrovský E. and Kapička A., 2005. Comments on “The use of field dependence of magnetic susceptibility for monitoring variations in titanomagnetite composition-a case study on basanites from the Vogelsberg 1996 drillhole, Germany” by de Wall and Nano, Stud. Geophys. Geod., 48, 767–776. Stud. Geophys. Geod., 49, 255–258.

    Google Scholar 

  • Pokorný J., Suza P. and Hrouda F., 2004. Anisotropy of magnetic susceptibility of rocks measured in variable weak magnetic fields using the KLY-4S Kappabridge. In: F. Martin-Hernandez, C. Luneburg, C. Aubourg and M. Jackson (Eds.), Magnetic Fabric: Methods and Applications, Spec. Publ. Geol. Soc. London, 238, 69–76.

  • Shaw H.R., 1972. Viscosities of magmatic silicate liquids: an empirical method of prediction. Am. J. Sci., 272, 870–893.

    Article  Google Scholar 

  • Stacey F.D. and Benerjee S.K., 1974. The Physical Principles of Rock Magnetism. Development in Solid Earth Geophysics. Elsevier, Amsterdam, 195 pp.

    Google Scholar 

  • Stone D.B., 1963. Anisotropic magnetic susceptibility measurements on a phonolite and on a folded metamorphic rock. Geophysical Journal, 7, 375–390.

    Article  Google Scholar 

  • Stoner E.C., 1945. The demagnetizing factor for ellipsoids. Phil. Mag., 36, 803–820.

    Article  Google Scholar 

  • Tarling D.H. and Hrouda F., 1993. The Magnetic Anisotropy of Rocks. Chapman and Hall, London, 217 pp.

    Google Scholar 

  • Ulrych J., Cajz V., Pivec E., Novák J.T., Nekovářík C. and Balogh K., 2000. Cenozoic intraplate alkaline volcanism of Western Bohemia. Stud. Geophys. Geod., 44, 346–351.

    Article  Google Scholar 

  • Uyeda S., Fuller M.D., Belshé J.C and Girdler R.W., 1963. Anisotropy of magnetic susceptibility of rocks and minerals. J. Geophys. Res., 68, 279–291.

    Article  Google Scholar 

  • Wing-Fatt L. and Stacey F.D., 1966. Magnetic anisotropy of laboratory materials in which magma flow is simulated. Pure Appl. Geophys., 64, 78–80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hrouda, F., Chlupáčová, M., Schulmann, K. et al. On the effect of lava viscosity on the magnetic fabric intensity in alkaline volcanic rocks. Stud Geophys Geod 49, 191–212 (2005). https://doi.org/10.1007/s11200-005-0005-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-005-0005-5

Keywords

Navigation