Skip to main content

Advertisement

Log in

The relationship between altitude of meteorological stations and average monthly and annual precipitation

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The aim of this study was to prove that altitudinal variability of average monthly and annual precipitation is better summarised when the altitude observed within a radius of several kilometres around a meteorological station is taken into consideration, instead of the altitude of the station itself. The use of the variable Z′, which combines the altitude of the closest mountain with its distance from the station, is compared against the use of altitude alone in simple linear and multiple quadratic regression equations for the altitudinal interpolation of precipitation over Greece. The data-set comprised precipitation observations from 516 meteorological stations. The comparison between the two variables is discussed on the basis of the resulting determination coefficients (R2) and standard errors of estimate (S). For all seasons, except summer, it was found that the variable Z′ improves the predictive ability of the regression equations, thus showing its potential for further use in interpolation procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreakos K., 1978. Climatic elements of 86 meteorological stations of the Hellenic network. Period 1930–1975. Studies of the Hellenic National Meteorological Service, Athens, Greece (in Greek).

  • Balafoutis Ch., 1977. Contribution to the Study of Climate in Macedonia and Thrace. Ph.D. Thesis, University of Thessaloniki, Thessaloniki, Greece (in Greek).

    Google Scholar 

  • Basist A., Bell G. and Meentmeyer V., 1994. Statistical relationships between topography and precipitation patterns. J. Clim., 7, 1305–1315.

    Article  Google Scholar 

  • Beek E.G., Stein A. and Janssen L.L.F., 1992. Spatial variability and interpolation of daily precipitation amount. Stochastic Hydrology and Hydraulics, 6, 209–221.

    Article  Google Scholar 

  • Boltsis C., 1986. Contribution in the Study of Precipitation Equivalent of Water in the Region of Ipiros. Ph.D. Thesis, Kapodistrian University of Athens, Athens, Greece (in Greek).

    Google Scholar 

  • Boudouris K., 1995. Hydrogeological Conditions of North Western Part of Achaía Prefecture, Greece. Ph.D. Thesis. University of Patras, Patras, Greece (in Greek).

    Google Scholar 

  • Briggs P.R. and Cogley J.G., 1996. Topographic bias in mesoscale precipitation networks. J. Clim., 9, 205–218.

    Article  Google Scholar 

  • Brown D.P. and Comrie A.C., 2002. Spatial modeling of winter temperature and precipitation in Arizona and New Mexico, USA. Clim. Res., 22, 115–128.

    Article  Google Scholar 

  • Chapman L. and Thornes J.E., 2003. The use of geographical information systems in climatology and meteorology. Prog. Phys. Geogr., 27, 313–330.

    Article  Google Scholar 

  • Comrie A.C. and Glenn E.C., 1998. Principal components-based regionalization of precipitation regimes across the southwest United States and northern Mexico, with an application to monsoon precipitation variability. Clim. Res., 10, 201–215.

    Article  Google Scholar 

  • Critchfield H., 1983. General Climatology, 4th Edition. Prentice Hall, New Jersey.

    Google Scholar 

  • Dale V.H. and Rauscher H.M., 1994. Assessing impacts of climate change on forests: The state of biological modeling. Clim. Change, 28, 65–90.

    Article  Google Scholar 

  • Daly C., Gibson W., Taylor G., Johnson G. and Pasteris P., 2002. A knowledge-based approach to the statistical mapping of climate. Clim. Res., 22, 99–113.

    Article  Google Scholar 

  • Daly C., Neilson R.P. and Phillips D.L., 1994. A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteorol., 33, 140–158.

    Article  Google Scholar 

  • Diodato N., 2005. The influence of topographic co-variables on the spatial variability of precipitation over small regions of complex terrain. Int. J. Climatol., 25, 351–363.

    Article  Google Scholar 

  • Gomez J.D., Etchevers J.D., Monterroso A.I., Gay C., Campo J. and Martinez M., 2008. Spatial estimation of mean temperature and precipitation in areas of scarce meteorological information. Atmósfera, 21, 35–56.

    Google Scholar 

  • Gooddale C.L., Aber J.D. and Ollinger S.V., 1998. Mapping monthly precipitation, temperature and solar radiation for Ireland with polynomial regression and a digital elevation model. Clim. Res., 10, 35–49.

    Article  Google Scholar 

  • Goovaerts P., 2000. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J. Hydrol., 228, 113–129.

    Article  Google Scholar 

  • Gouvas M. and Sakellariou N., 2004. Relation of the altitude of the meteorological stations to the average annual and monthly rainfall amount. Proceedings of 7th Pan-Hellenic (International) Conference of Meteorology, Climatology and Atmospheric Physics, Nicosia 28–30 September 2004, Vol. b: 765–771, ISBN: 9963-9160-1-3.

  • Hartkamp A.D., de Buers K., Stein A. and White J.W., 1999. Interpolation Techniques for Climatic Variables. NRG-GIS Series 99-01, Mexico, D.F., CIMMYT (http://www.cimmyt.org/Research/NRG/pdf/NRGGIS%2099_01.pdf)

    Google Scholar 

  • Hevesi J.A., Istok J.D. and Flint A.L., 1992. Precipitation estimation in mountainous terrain using multivariate geostatistics. Part I: Structural analysis. J. Appl. Meteorol., 31, 661–676.

    Article  Google Scholar 

  • Johansson B. and Chen D., 2003. The influence of wind and topography on precipitation distribution in Sweden: Statistical analysis and modelling. Int. J. Climatol. 23, 1523–1535.

    Article  Google Scholar 

  • Johnson G. and Hanson C., 1995. Topographic and atmospheric influences on precipitation variability over a mountainous watershed. J. Appl. Meteorol., 34, 68–87.

    Article  Google Scholar 

  • Kandilis F., 1988. The Precipitation in “Sterea Hellas”. Ph.D. Thesis, University of Athens, Athens, Greece (in Greek).

    Google Scholar 

  • Kotoulas D., 1986. Courses of General Hydrology and Hydraulics. Publication Service of the Aristotle University of Thessaloniki, Thessaloniki, Greece (in Greek).

    Google Scholar 

  • Kyriakidis P.C., Kim J. and Miller N.L., 2001. Geostatistical mapping of precipitation from rain gauge data using atmospheric and terrain characteristics. J. Appl. Meteorol., 40, 1855–1877.

    Article  Google Scholar 

  • Lloyd C.D., 2005. Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. J. Hydrol., 308, 128–150.

    Article  Google Scholar 

  • Lolis C.J., Bartzokas A. and Metaxas D.A., 1999. Spatial covariability of the climatic parameters in the Greek area. Int. J. Climatol., 19, 185–196.

    Article  Google Scholar 

  • Lull H.W. and Ellison L., 1950. Precipitation in relation to altitude in central Utah. Ecology, 31, 479–484.

    Article  Google Scholar 

  • Maheras P., 1988. The synoptic weather types and objective delimitation of the winter period in Greece. Weather, 43, 40–45.

    Google Scholar 

  • Mariolopoulos E. and Karapiperis L., 1955. Rainfall in Greece. National Print-House, Athens, Greece (in Greek).

    Google Scholar 

  • Markou-Iakovaki P. and Lioki-Livada-Tselepidaki I., 1975. Climatograms and Drought Index in the Greek Area. Publication Service of the Laboratory of Climatology, University of Athens, Athens (in Greek).

    Google Scholar 

  • Martínez-Cob A., 1996. Multivariate geostatistical analysis of evapotranspiration and precipitation in mountainous terrain. J. Hydrol., 174, 19–35.

    Article  Google Scholar 

  • Morin G., Fortin J.P., Sochanska W. and Lardeau J.P., 1979. Use of principal component analysis to identify homogeneous precipitation stations for optimal interpolation. Water Resour. Res., 15, 1841–1850.

    Article  Google Scholar 

  • Naoum S. and Tsanis I. K., 2004. A multiple linear regression GIS module using spatial variables to model orographic rainfall. J. Hydroinform., 6, 39–56.

    Google Scholar 

  • Nikolakis D., 1985. The Precipitation in Thessaly. Ph.D. Thesis, University of Athens, Athens, Greece (in Greek).

    Google Scholar 

  • Ninyerola M., Pons X. and Roure J.M., 2000. A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. Int. J. Climatol., 20, 1823–1841.

    Article  Google Scholar 

  • Oettli P. and Camberlin P., 2005. Influence of topography on monthly rainfall distribution over East Africa. Clim. Res., 28, 199–212.

    Article  Google Scholar 

  • Pagonis K., 1998. Contribution in the Study of Precipitation in Peloponnese. Ph.D. Thesis, University of Athens, Athens, Greece (in Greek).

    Google Scholar 

  • Pardo-Iguzquiza E., 1998. Comparison of geostatistical methods for estimating the areal average climatological rainfall mean using data on precipitation and topography. Int. J. Climatol., 18, 1031–1047.

    Article  Google Scholar 

  • Roe G.H., 2005. Orographic precipitation. Annu. Rev. Earth. Planet. Sci., 33, 645–671.

    Article  Google Scholar 

  • Rotunno R. and Houze R.A., 2007. Lessons on orographic precipitation from the Mesoscale Alpine Programme. Q. J. R. Meteorol. Soc., 133, 811–830.

    Article  Google Scholar 

  • Saghafian B. and Bondarabadi S.R., 2008. Validity of regional rainfall spatial distribution methods in mountainous areas. J. Hydrol. Eng., 13, 531–540.

    Article  Google Scholar 

  • Smith R.B. and Barstad I., 2004. A linear theory of orographic precipitation. J. Atmos. Sci., 61, 1377–1391.

    Article  Google Scholar 

  • Soulis N., 1994. The Climate of Epirus. Ioannina, 216 pp. (self-published in Greek).

  • Stathis D., 1998. Meteorological Features of Pindos from Hydrological Point of View. Ph.D. Thesis, University of Thessaloniki, Thessaloniki, Greece (in Greek).

    Google Scholar 

  • StatSoft Inc., 2007. STATISTICA (Data Analysis Software System), Version 8.0. www.statsoft.com.

  • Tolika K., Maheras P., Vafiadis M., Flocas H. and Arseni-Papadimitriou A., 2007. Simulation of seasonal precipitation and raindays over Greece: A statistical downscaling technique based on Artificial Neural Networks (ANNs). Int. J. Climatol., 27, 861–881.

    Article  Google Scholar 

  • Wotling G., Bouvier C., Danloux J. and Fritsch J.M., 2000. Regionalization of extreme precipitation distribution using the principal components of the topographical environment. J. Hydrol., 233, 86–101.

    Article  Google Scholar 

  • Xoplaki E., Luterbacher J., Burkard R., Patrikas I. and Maheras P., 2000. Connection between the large-scale 500 hPa geopotential height fields and precipitation over Greece during wintertime. Clim. Res., 14, 129–146.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markos Gouvas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gouvas, M., Sakellariou, N. & Xystrakis, F. The relationship between altitude of meteorological stations and average monthly and annual precipitation. Stud Geophys Geod 53, 557–570 (2009). https://doi.org/10.1007/s11200-009-0039-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-009-0039-1

Key words

Navigation