Skip to main content
Log in

A precise gravimetric geoid model in a mountainous area with scarce gravity data: a case study in central Turkey

  • Regular Paper
  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

In mountainous regions with scarce gravity data, gravimetric geoid determination is a difficult task that needs special attention to obtain reliable results satisfying the demands, e.g., of engineering applications. The present study investigates a procedure for combining a suitable global geopotential model and available terrestrial data in order to obtain a precise regional geoid model for Konya Closed Basin (KCB). The KCB is located in the central part of Turkey, where a very limited amount of terrestrial gravity data is available. Various data sources, such as the Turkish digital elevation model with 3 ″ × 3″ resolution, a recently published satellite-only global geopotential model from the Gravity Recovery and Climate Experiment satellite (GRACE) and the ground gravity observations, are combined in the least-squares sense by the modified Stokes’ formula. The new gravimetric geoid model is compared with Global Positioning System (GPS)/levelling at the control points, resulting in the Root Mean Square Error (RMS) differences of ±6.4 cm and 1.7 ppm in the absolute and relative senses, respectively. This regional geoid model appears to be more accurate than the Earth Gravitational Model 2008, which is the best global model over the target area, with the RMS differences of ±8.6 cm and 1.8 ppm in the absolute and relative senses, respectively. These results show that the accuracy of a regional gravimetric model can be augmented by the combination of a global geopotential model and local terrestrial data in mountainous areas even though the quality and resolution of the primary terrestrial data are not satisfactory to the geoid modelling procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayhan M.E., Demir C., Lenk O., Kılıçoğlu A., Aktug B., Acikgoz M., Firat O., Sengun Y.S., Cingoz A., Gurdal M.A., Kurt A.I., Ocak M., Turkezer A., Yildiz H., Bayazit N., Ata M., Caglar Y. and Ozerkan A., 2002. Turkish National Fundamental GPS Network; 1999A (TUTGA-99A), Turkish Journal of Mapping (Harita Dergisi), Special Issue 16, (in Turkish).

  • Bildirici I.O., Ustun A., Ulugtekin N., Selvi H.Z., Abbak R.A., Bugdayci I. and Dogru A.O., 2009. Compilation of digital elevation model for Turkey in 3-arc-second resolution by using SRTM data supported with local elevation data. In: Gartner G. and Ortag F. (Eds.), Cartography in Central and Eastern Europe. Lecture Notes in Geoinformation and Cartography. Springer-Verlag, Heidelberg, Germany, 63–76.

    Chapter  Google Scholar 

  • Ellmann A., 2004. The Geoid for the Baltic Countries Determined by the Least Squares Modification of Stokes Formula. Ph.D. Thesis, Royal Institute of Technology (KTH), Division of Geodesy, Stockholm, Sweden.

    Google Scholar 

  • Ellmann A., 2005a. Computation of three stochastic Modifications of Stokes’ Formula for regional geoid determination. Comput. Geosci., 31, 742–755.

    Article  Google Scholar 

  • Ellmann A., 2005b. Two deterministic and three stochastic modifications of Stokes’ formula: a case study for the Baltic countries. J. Geodesy, 79, 11–23.

    Article  Google Scholar 

  • Ellmann A. and Sjöberg L.E., 2004. Ellipsoidal correction for the modified Stokes’ formula. Boll. Geod. Sci. Aff., 63, 153–172.

    Google Scholar 

  • Flechtner F., Dahle C., Neumayer K.H., König R. and Förste C., 2010. The Release 04 CHAMP and GRACE EIGEN gravity field models. In: Flechtner F.M., Gruber Th., Güntner A., Mandea M., Rothacher M., Schöne T. and Wickert J. (Eds.), System Earth via Geodetic-Geophysical Space Techniques. Advanced Technologies in Earth Sciences. Springer-Verlag, Heidelber, Germany, 41–58, ISBN 978-3-642-10227-1, DOI 978-3-642-10228-8.

    Chapter  Google Scholar 

  • Hagiwara Y., 1976. A new formula for evaluating the truncation error coefficient. Bulletin Geodesique, 50, 131–135.

    Article  Google Scholar 

  • Heiskanen W.A. and Moritz H., 1967. Physical Geodesy. W.H. Freeman and Co., London, U.K.

    Google Scholar 

  • Janák J. and Vaníček P., 2005. Mean free-air gravity anomalies in the mountains. Stud. Geophys. Geod., 49, 31–42.

    Article  Google Scholar 

  • Kiamehr R., 2006. Precise Gravimetric Geoid Model for Iran Based on GRACE and SRTM Data and the Least Squares Modification of the Stokes’ Formula with Some Geodynamic Interpretations. Ph.D. Thesis. Royal Institute of Technology (KTH), Department of Transport and Economics, Stockholm, Sweden.

    Google Scholar 

  • Kiamehr R., 2007. Qualification and refinement of the gravity database based on cross-validation approach. A case study of Iran. Acta Geod. Geophys. Hung., 42, 195–195.

    Google Scholar 

  • Kotsakis C. and Sideris M.G., 1999. On the adjustment of combined GPS/levelling/geoid networks. J. Geodesy, 73, 412–421.

    Article  Google Scholar 

  • Krige D.G., 1951. A statistical approach to some basic mine valuation problems on the Witwatersrand. J. Chem. Metall. Min. Soc. S. Afr., 52(6), 119–139, DOI: 10.2307/3006914.

    Google Scholar 

  • Martinec Z., 1998. Boundary-Value Problems for Gravimetric Determination of a Precise Geoid. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Mayer-Guerr T., Kurtenbach E. and Eicker A., 2010. ITG-Grace2010 Gravity Field Model. http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010.

  • Meissl P., 1971. A Study of Covariance Functions from Discrete Mean Value. Report No.151, Department of Geodetic Sciences, Ohio State University, Columbus, USA.

    Google Scholar 

  • Molodensky M.S., Yeremeev V.F. and Yurkina M.I., 1960. Methods for study of the external gravitational field and figure of the Earth. TRUDY Ts NIIGAiK, 131, Geodezizdat, Moscow (English translat.: Israel Program for Scientific Translation, Jerusalem 1962).

    Google Scholar 

  • Paul M.K., 1973. A method of evaluating the truncation error coefficients for geoidal height. Bulletin Geodesique, 110, 413–425.

    Article  Google Scholar 

  • Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2008. An Earth Gravitational Model to Degree 2160: EGM2008. Geophysical Research Abstracts, 10, 2-2-2008. Full version released by National Geospatial-Intelligence Agency, Bethesda, MD, (http://www.dgfi.badw.de/typo3_mt/fileadmin/2kolloquium_muc/2008-10-08/Bosch/EGM2008.pdf).

  • Sjöberg L.E., 1981. Least squares combination of satellite and terrestrial data in physical geodesy. Ann. Geophys., 37, 25–30.

    Google Scholar 

  • Sjöberg L.E., 1984. Least-Squares Modification of Stokes and Venning-Meinesz Formulas by Accounting for Errors of Truncation, Potential Coeffcients and Gravity Data. Technical Report, Department of Geodesy, Institute of Geophysics, University of Uppsala, Uppsala, Sweden.

    Google Scholar 

  • Sjöberg L.E., 1991. Refined least squares modification of Stokes formula. Manuscripta Geodaetica, 16, 367–375.

    Google Scholar 

  • Sjöberg L.E., 2001. The topographic and atmospheric corrections of gravimetric geoid determination with special emphasis on the effects of degrees of zero and one. J. Geodesy, 75, 283–290.

    Article  Google Scholar 

  • Sjöberg L.E., 2003a. A computational scheme to model geoid by the modified Stokes formula without gravity reductions. J. Geodesy, 77, 423–432.

    Article  Google Scholar 

  • Sjöberg L.E., 2003b. A general model of modifying Stokes formula and its least squares solution. J. Geodesy, 77, 790–804.

    Google Scholar 

  • Sjöberg L.E., 2003c. A solution to the downward continuation effect on the geoid determination by Stokes formula. J. Geodesy, 77, 94–100.

    Article  Google Scholar 

  • Sjöberg L.E., 2004. A spherical harmonic representation of the ellipsoidal correction to the modified Stokes formula. J. Geodesy, 78, 180–186.

    Article  Google Scholar 

  • Sjöberg L.E. and Hunegnaw A., 2000. Some modifications of Stokes’ formula that account for truncation and potential coefficient errors. J. Geodesy, 74, 232–238.

    Article  Google Scholar 

  • Sjöberg L.E. and Nahavandchi H., 2000. The atmospheric geoid effects in Stokes’ formula. Geophys. J. Int., 140, 95–100.

    Article  Google Scholar 

  • SRTM, 2010. http://www2.jpl.nasa.gov/srtm.

  • TRDEM3, 2008. http://www.tsym3.selcuk.edu.tr.

  • Ulotu P.E., 2009. Geoid Model of Tanzania from Sparse and Varying Gravity Data Density by the KTH Method. Ph.D. Thesis. Division of Transport and Economics, Royal Institute of Technology (KTH), Stockholm, Sweden.

    Google Scholar 

  • Ustun A. and Abbak R.A., 2010. On global and regional spectral evaluation of global geopotential models. J. Geophys. Eng., 7, 369–379.

    Article  Google Scholar 

  • Vaníček P. and Featherstone W.E., 1998. Performance of three types of Stokes’s kernel in the combined solution for the geoid. J. Geodesy, 72, 684–697.

    Article  Google Scholar 

  • Vaníček P. and Kleusberg A., 1987. The Canadian geoid — Stokes approach. Manuscripta Geodaetica, 12, 86–98.

    Google Scholar 

  • Vaníček P., Novák P. and Martinec Z., 2001. Geoid, topography, and the Bouguer plate or shell. J. Geodesy, 75, 210–215.

    Article  Google Scholar 

  • Vaníček P., Tenzer R. and Sjöberg L.E., 2004. New views of the spherical Bouguer gravity anomaly. Geophys. J. Int., 159, 460–472.

    Article  Google Scholar 

  • Vincent S. and Marsch J., 1974. Gravimetric global geoid. In: Veis G. (Ed.), Proceedings of International Symposium on the Use of Artificial Satellites for Geodesy and Geodynamics. National Technical University, Athens, Greece.

    Google Scholar 

  • Wong L. and Gore R., 1969. Accuracy of geoid heights from the modified Stokes kernels. Geophys. J. R. Astron. Soc., 18, 81–91.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramazan A. Abbak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbak, R.A., Sjöberg, L.E., Ellmann, A. et al. A precise gravimetric geoid model in a mountainous area with scarce gravity data: a case study in central Turkey. Stud Geophys Geod 56, 909–927 (2012). https://doi.org/10.1007/s11200-011-9001-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-011-9001-0

Keywords

Navigation