Skip to main content

Advertisement

Log in

Impact of GOCE Level 1b data reprocessing on GOCE-only and combined gravity field models

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The reprocessing of Gravity field and steady-state Ocean Circulation Explorer (GOCE) Level 1b gradiometer and star tracker data applying upgraded processing methods leads to improved gravity gradient and attitude products. The impact of these enhanced products on GOCE-only and combined GOCE+GRACE (Gravity Recovery and Climate Experiment) gravity field models is analyzed in detail, based on a two-months data period of Nov. and Dec. 2009, and applying a rigorous gravity field solution of full normal equations. Gravity field models that are based only on GOCE gradiometer data benefit most, especially in the low to medium degree range of the harmonic spectrum, but also for specific groups of harmonic coefficients around order 16 and its integer multiples, related to the satellite’s revolution frequency. However, due to the fact that also (near-)sectorial coefficients are significantly improved up to high degrees (which is caused mainly by an enhanced second derivative in Y direction of the gravitational potential — VYY), also combined gravity field models, including either GOCE orbit information or GRACE data, show improvements of more than 10% compared to the use of original gravity gradient data. Finally, the resulting gradiometry-only, GOCE-only and GOCE+GRACE global gravity field models have been externally validated by independent GPS/levelling observations in selected regions. In conclusion, it can be expected that several applications will benefit from the better quality of data and resulting GOCE and combined gravity field models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Braitenberg C., Pivetta T. and Li Y., 2012. The youngest generation GOCE products in unraveling the mysteries of the crust of North-Central Africa. Geophys. Res. Abs., 14, EGU2012–6022.

    Google Scholar 

  • Broerse T., Visser P., Bouman J., Fuchs M., Vermeersen B. and Schmidt M., 2011. Modelling and observing the 8.8 Chile and 9.0 Japan earthquakes using GOCE. In: Ouwehand L. (Ed.), Proceedings of 4th International GOCE User Workshop. ESA-SP 696, European Space Agency, Noordwijk, The Netherlands, ISBN: 978-92-9092-260-5.

    Google Scholar 

  • Box G.E.P., Jenkins G.M. and Reinsel G.C., 2008. Time Series Analysis, Forecasting and Control. 4th Edition. Wiley Publications, Hoboken, New Jersey.

    Google Scholar 

  • Bruinsma S.L., Marty J.C., Balmino G., Biancale R., Förste C., Abrikosov O. and Neumeyer H., 2010. GOCE gravity field recovery by means of the direct numerical method. In: Lacoste-Francis H. (Ed.), Proceedings of ESA Living Planet Symposium. ESA SP-686, European Space Agency, Noordwijk, The Netherlands, ISBN 978-92-9221-250-6.

    Google Scholar 

  • Drinkwater M.R., Floberghagen R., Haagmans R., Muzi D. and Popescu A., 2003. GOCE: ESA’s first Earth Explorer Core mission. In: Beutler G., Drinkwater M.R., Rummel R. and von Steiger R. (Eds.), Earth Gravity Field from Space — from Sensors to Earth Sciences. Space Sciences Series of ISSI, 17, 419–432, Kluwer Academic Publishers, Dordrecht, The Netherlands, ISBN: 1-4020-1408-2.

    Chapter  Google Scholar 

  • Förste C., Bruinsma S., Shako R., Marty J.C., Flechtner F., Abrikosov O., Dahle C., Lemoine J.M., Neumayer K.H., Biancale R., Barthelmes F., König R. and Balmino G., 2011. EIGEN-6 — A new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse. Geophys. Res. Abs., 13, EGU2011–3242-2.

    Google Scholar 

  • Goiginger H., Rieser D., Mayer-Guerr T., Pail R., Fecher T., Gruber T., Albertella A., Maier A., Höck E., Krauss S., Hausleitner W., Baur O., Jäggi A., Meyer U., Brockman J.M., Schuh W.-D., Krasbutter I. and Kusche J., 2011. The satellite-only global gravity field model GOCO02S. Geophys. Res. Abs., 13, EGU2011–10571 (http://www.goco.eu/data/egu2011-10571-goco02s.pdf).

    Google Scholar 

  • Gruber T., Rummel R., Abrikosov O. and van Hees R. (Eds.), 2012. GOCE Level 2 Product Data Handbook. GO-MA-HPF-GS-0110, Issue 4, Revision 3. European Space Agency, Noordwijk, The Netherlands (https://earth.esa.int/c/document_library/get_file?folderId=14168&name=DLFE-591.pdf).

    Google Scholar 

  • Gruber T., Visser P.N.A.M., Ackermann C. and Hosse M., 2011. Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons. J. Geodesy, 85, 845–860, DOI: 10.1007/s00190-011-0486-7.

    Article  Google Scholar 

  • Hosse M., Pail R., Horwath M., Mahatsente R., Götze H., Jahr T., Jentzsch M., Gutknecht B.D., Köther N., Lücke O., Sharma R. and Zeumann S., 2011. Integrated modeling of satellite gravity data of active plate margins — bridging the gap between geodesy and geophysics. Abstract G43A-0752 Poster, presented at AGU Fall Meeting 2011, San Francisco, 08.12.2011.

  • Kargoll B., 2007. On the Theory and Application of Model Misspecification Tests in Geodesy. PhD Thesis, University of Bonn, Germany (http://hss.ulb.uni-bonn.de/2007/1113/1113.pdf).

    Google Scholar 

  • Klees R., Ditmar P. and Broersen P., 2003. How to handle colored observation noise in large leastsquares problems. J. Geodesy, 76, 629–640, DOI: 10.1007/s00190-002-0291-4.

    Article  Google Scholar 

  • Koch K.H. and Kusche J., 2002. Regularization of geopotential determination from satellite data by variance components. J. Geodesy, 76, 259–268, DOI: 10.1007/s00190-002-0245-x.

    Article  Google Scholar 

  • Lackner B., 2006. Data Inspection and Hypothesis Tests of Very Long Time Series Applied to GOCE Satellite Gravity Gradiometry Data. PhD Thesis, TU Graz, Austria, 187 pp.

    Google Scholar 

  • Mayer-Gürr T., Kurtenbach E. and Eicker A., 2010. The Satellite-Only Gravity Field Model ITGGrace2010s (http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010).

  • Mayrhofer R., Pail R. and Fecher T., 2010. Quick-look gravity field solutions as part of the GOCE quality assessment. In: Lacoste-Francis H. (Ed.), Proceedings of ESA Living Planet Symposium. ESA SP-686, European Space Agency, Noordwijk, The Netherlands, ISBN 978-92-9221-250-6 (https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=55603).

    Google Scholar 

  • Migliaccio F., Reguzzoni M., Sansó F., Tscherning C.C. and Veicherts M., 2010. GOCE data analysis: the space-wise approach and the first space-wise gravity field model. In: Lacoste-Francis H. (Ed.), Proceedings of ESA Living Planet Symposium. ESA SP-686, European Space Agency, Noordwijk, The Netherlands, ISBN 978-92-9221-250-6 (http://www.cct.gfy.ku.dk/publ_cct/cct2009.pdf).

    Google Scholar 

  • Oppenheim A.V. and Schafer R.W., 1989. Discrete-Time Signal Processing. Englewood Cliffs, Prentice Hall, NJ.

    Google Scholar 

  • Pail R., Bruinsma S., Migliaccio F., Förste C., Goiginger H., Schuh W.-D, Höck E., Reguzzoni M., Brockmann J.M., Abrikosov O., Veicherts M., Fecher T., Mayrhofer R., Krasbutter I., Sansó F. and Tscherning, C.C., 2011. First GOCE gravity field models derived by three different approaches. J. Geodesy, 85, 819–843, DOI: 10.1007/s00190-011-0467-x.

    Article  Google Scholar 

  • Pail R., Metzler B., Preimesberger T., Lackner B. and Wermuth M., 2007. GOCE Quick-look gravity field analysis in the framework of HPF. In: Fletcher K. (Ed.), 3rd Int. GOCE User Workshop. ESA SP-627, 325–332, European Space Agency, Noordwijk, The Netherlands, ISBN: 92-9092-938-3.

    Google Scholar 

  • Pail R., Goiginger H., Mayrhofer R., Schuh W.-D., Brockmann J.M., Krasbutter I., Höck E. and Fecher T., 2010a. GOCE global gravity field model derived from orbit and gradiometry data applying the time-wise method. In: Lacoste-Francis H. (Ed.), Proceedings of ESA Living Planet Symposium. ESA SP-686, European Space Agency, Noordwijk, The Netherlands, ISBN 978-92-9221-250-6 (www.espace-tum.de/mediadb/910370/910371/pail10.pdf).

    Google Scholar 

  • Pail R., Goiginger H., Schuh W.-D., Höck E., Brockmann J.M., Fecher T., Gruber T., Mayer-Gürr T., Kusche J., Jäggi A. and Rieser D., 2010b. Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys. Res. Lett., 37, L20314, DOI: 10.1029/2010GL044906.

    Article  Google Scholar 

  • Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res., 117, B04406, DOI: 10.1029/2011JB008916.

    Article  Google Scholar 

  • Reigber Ch., Balmino G., Schwintzer P., Biancale R., Bode A., Lemoine J.M., Koenig R., Loyer S., Neumayer H., Marty J.C., Barthelmes F. and Perosanz F., 2002. A high quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophys. Res. Lett., 29, 1692, DOI: 10.1029/2002GL015064.

    Article  Google Scholar 

  • Rummel R., Gruber T. and Koop R., 2004. High level processing facility for GOCE: products and processing strategy. In: H. Lacoste (Ed.), 2nd International GOCE User Workshop: GOCE, the Geoid and Oceanography. ESA SP-569, European Space Agency, Noordwijk, The Netherlands, ISBN (Print) 92-9092-880-8, ISSN 1609-042X (http://earth.esa.int/goce04/goce_proceedings/04_rummel.pdf).

    Google Scholar 

  • Rummel R., Yi W. and Stummer C., 2011. GOCE gravitational gradiometry. J. Geodesy, 85, 777–790.

    Article  Google Scholar 

  • Schuh W.-D., 1996. Tailored Numerical Solution Strategies for the Global Determination of the Earth’s Gravity Field. Mitteilungen Geod. Inst. TU Graz 81, Graz University of Technology, Graz, Austria.

    Google Scholar 

  • Schuh W.-D., Brockmann J.M., Kargoll B., Krasbutter I. and Pail R., 2010. Refinement of the stochastic model of GOCE scientific data and its effect on the in-situ gravity field solution. In: Lacoste-Francis H. (Ed.), Proceedings of ESA Living Planet Symposium. ESA SP-686, European Space Agency, Noordwijk, The Netherlands, ISBN 978-92-9221-250-6.

    Google Scholar 

  • Siemes C., 2008. Digital Filtering Algorithms — Tools for Decorrelation within Large Least Squares Problems in the Context of Satellite Gravity Gradiometry. PhD Thesis, University of Bonn, Germany (http://hss.ulb.uni-bonn.de/2008/1374/1374.pdf).

    Google Scholar 

  • Sneeuw N., 2000. A semi-analytical approach to gravity field analysis from satellite observations. DGK Series C, No. 527, Verlag der Bayerischen Akademie der Wissenschaften, ISBN (Print) 3-7696-9566-6, ISSN 0065-5325.

  • Sneeuw N. and van Gelderen M., 1997. The polar gap. In: Sansò F. and Rummel R. (Eds.), Geodetic Boundary Value Problems in View of the One Centimeter Geoid. Lecture Notes in Earth Sciences, 65, Springer-Verlag, Berlin, Germany, 559–568, DOI: 10.1007/BFb0011699.

    Chapter  Google Scholar 

  • Stummer C., Fecher T. and Pail R., 2011. Alternative method for angular rate determination within the GOCE gradiometer processing. J. Geodesy, 85, 585–596.

    Article  Google Scholar 

  • Stummer C., Siemes C., Pail R., Frommknecht B. and Floberghagen R., 2012. Upgrade of the GOCE Level 1b gradiometer processor. Adv. Space Res., 49, 739–752.

    Article  Google Scholar 

  • Tapley B.D., Bettadpur S., Watkins M. and Reigber C., 2004. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett., 31, L09607, DOI: 10.1029/2004GL019920.

    Article  Google Scholar 

  • Welch P.D., 1967. The use of fast Fourier transforms for the estimation of power spectra: A method based on time averaging over short modified periodograms. IEEE Trans. Audio Electroacoust., 15, 70–73.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Pail.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pail, R., Fecher, T., Murböck, M. et al. Impact of GOCE Level 1b data reprocessing on GOCE-only and combined gravity field models. Stud Geophys Geod 57, 155–173 (2013). https://doi.org/10.1007/s11200-012-1149-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-012-1149-8

Keywords

Navigation