Skip to main content
Log in

Ultrasound Study of Limestone Rock Physical and Mechanical Properties

  • Published:
Soil Mechanics and Foundation Engineering Aims and scope

Regressive analysis was used to determine empirical correlations between the velocity of an elastic P-wave (compressional pulse) and a number of physical, strength, and deformation characteristics of limestone rock collected at quarries in Turkey. The results may be used to determine the properties of limestone rock formations for engineering purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Kurtulus, F. Sertcelik, M. Canbay, and I. Sertcelik, "Estimation of Atterberg limits and bulk mass density of an expansive soil from P-wave velocity measurements," Bull. Eng. Geol. Environ., No. 69, 153-154 (2010).

  2. C. Kurtulus, T. S. Irmak, and I. Sertcelik, "Physical and mechanical properties of Gokceada: Imbros (NE Aegean Sea) Island andesites," Bull. Eng. Geol. Environ., DOI: 10.1007/s10064-010-0270-6 (2010).

  3. B. Christaras, "P-wave velocity and quality of building materials," in: Proc. Int. Symp. Industrial Minerals and Building Stones, 295-300 (2003).

  4. S. Kahraman, "A correlation between P-wave velocity, number of joints and Schmidt hammer rebound number," Int. J. Rock Mech. Min. Sci., 38, 729-733 (2001).

    Article  Google Scholar 

  5. P. Gaviglio, "Longitudinal waves propagation in a limestone: the relationship between velocity and density," Rock Mech. Rock Eng., 22, 299-306 (1989).

    Article  Google Scholar 

  6. M. T. Gladwin, "Ultrasonic stress monitoring in underground mining," Int. J. Rock Mech. Min. Sci, 19, 221-228 (1982).

    Article  Google Scholar 

  7. K. Brovtsyn and G. S. Chershneva, "Experimental ultrasonic study of the moisture content of clay rocks," Refract. Ind. Ceramics, No. 9, 41, Nos. 9-10, 35-36 (2000).

  8. M. Lebedev, O. Bilenko, V. Mikhaltsevitch, M. Pervukhina and B. Gurevich, "Laboratory measurements of ultrasonic velocities in CO2 saturated brines.," Energy Procedia, 63: 4273-4280 (2014).

    Article  Google Scholar 

  9. ASTM D7012-10, Standard Test Method for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens Under Varying States of Stress and Temperatures (2010).

  10. ISRM. The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring, [R. Ulusay and J.A. Hudson, eds.], 1974-2006, Kozan Ofset Matbaacilik, Ankara, Turkey (2007).

  11. A. I. Sarno, "Correlations of static, dynamic, and physical properties to the weathering state of Ocala limestone," MS Thesis, University of North Florida, Jacksonville, FL (2010).

  12. L. Dincer, A. Acar, L. Cobanoglu and Y. Y.Uras, "Correlation between Schmidt hardness, uniaxial compressive stress and Young's modulus for andesites, basalts and tuff," Bull. Eng. Geol Environ., 63, No. 2, 141-148 (2004).

  13. S. Kahraman, Evaluation of simple methods for assessing the uniaxial compressive strength of rock, Int. J. Rock Mech. Min. Sci., 38, 981-994 (2001).

    Article  Google Scholar 

  14. M. Romana, "Correlation between uniaxial compressive and point load (Franklin test) strengths for different rock classes,," in: 9th ISRM Congress, 1, 673-676, Paris (1999).

  15. S. Kahraman, M. Fener, and E. Kozman, "Predicting the compressive and tensile strength of rocks from indentation hardness index," J. South. Afr. Inst. Mining and Metallurgy, 112, 331-339 (2012).

    Google Scholar 

  16. C. Canakci, A. Baskayoglu, and H. Gullu, "Prediction of compressive and tensile strength of Gaziantep basalts via neural networks and gene expression programming," Neural Comp. Appl., 18, 1031-1041 (2009).

    Article  Google Scholar 

  17. V. Palchik and Y. H. Hatzor, "The influence of porosity on tensile and compressive strength of porous chalks," Rock Mech. Rock Eng., 37, No. 4, 331-334 (2004).

    Article  Google Scholar 

  18. M. Zattin, W. Cavazza, A. I. Okay, I. Federici, M. G. Fellin, A. Pignalosa, and P. Reiners, "A Precursor of the North Anatolian Fault in the Marmara Sea Region," J. Asian Earth Sci., 97-108 (2010).

  19. L. V. Nikitin and V. N. Odintsev, "A dilatancy model of tensile macrocracks in compressed rock," Fatigue and Fracture of Engineering Materials and Structures, 22, 1003-1010 (1999).

    Article  Google Scholar 

  20. A. Zacoeb, K. Ishibashi and Y. Ito, "Estimating the compressive strength of drilled concrete cores by point load testing," Proc. 29th JCI Ann. Meeting, Sendai, Japan 523-530 (2006).

  21. K. T. Chau and R. H. C. Wong, "Uniaxial compressive strength and point load strength of rocks," Int. J. Rock Mech. Min. Sci. Geomech., 33, No. 2, 183-188 (1996).

  22. V. K. Singh and D. P. Singh, "Correlation between point load index and compressive strength for quartzite rocks," Geotech. Geol. Eng., 11, 269-272. (1993).

    Article  Google Scholar 

  23. D. K. Ghosh and M. Srivastava, "Point-load strength: an index for classification of rock material," Bull. Int. Assoc. Eng. Geol., 44, 27-33 (1991).

    Article  Google Scholar 

  24. Z. T. Bieniawski, "Point load test in geotechnical practice," Eng. Geol., 1, 1-11 (1975).

    Article  Google Scholar 

  25. A. M. Gozubol, N. Aysal, "Cebecikoy kirectasi ocaklarinda litolojik ve yapisal kokenli isletme sinirlari," Istanbul Yerbilimleri Dergisi, 21, No. 1, 25-35 (2008).

  26. K. Erguvanli, "Hereke Pudingleri ile Gebze taslarinin insaat bakimindan etudu ve civarlarinin jeolojisi," Doktora Tezi, ITU Insaat Fak., (1949).

  27. E. Sirel and H. Gunduz "Kirklareli (Kuzey Trakya) denizel Oligoseninin stratigrafisi ve nummulites turleri," Turkiye Jeoloji Kurumu Bulteni, 19, 155-158 (1976).

  28. A. Tugrul, I. H. Zarif, M. Yildirim, and O. Gurpinar, "Istanbuldaki tarihi anit ve yapilarda kullanilan kirectaslarinin kirlenme ve ayrismasinda etkin faktorler," Istanbul Univ. Muh. Fak. Yerbilimleri Dergisi, 12 (1999).

  29. ASTM D5731-08. Standard test method for the determination of the point load strength index of rock and Application to Rock Strength Classification (2008).

  30. ISRM. Rock Characterization Suggested Method, Testing and Monitoring, Pergamon Press, London, UK (1987).

  31. ISRM. Suggested Methods for Determining Tensile Strength of Rock Materials, Int. J. Rock Mech. Mining Sci. Geomech., Abstracts, 15, 101-103 (1978).

  32. J. S. Cargill and A. Shakoor, "Evaluation of empirical methods for measuring the uniaxial compressive strength," Int. J. Rock Mech. Min. Sci., 27, 495-503 (1990).

    Article  Google Scholar 

  33. K. L. Gunsallus and F. H. Kulhawy, "A comparative evaluation of rock strength measures," Int. J. Rock Mech. Min. Sci., 21, 233-248 (1984).

    Article  Google Scholar 

  34. I. R. Forster, "The influence of core sample geometry on the axial point-load test," Int. J. Rock Mech. Min. Sci., 20, 291-295 (1983).

    Article  Google Scholar 

  35. F. P. Hassani, M. J. Scoble, and B. N. Whittaker, "Application of point load index test to strength determination of rock and proposals for new size-correction chart," in: Proc 21st US Symp. Rock Mech., Rolla, 543-564 (1989).

  36. Read J.R.L., P. N. Thornten, and W. M. Regan, "A rational approach to the point load test," in: Proc. Aust-NZ Geomech., 2, 35-39 (1980).

  37. E. Broch and J. A. Franklin, "Point-load strength test,," Int. J. Rock Mech. Min. Sci., 9, No. 6, 669-697 (1972).

    Article  Google Scholar 

  38. D. V. D'Andrea, R. L. Fisher, and D. E. Fogelson, "Prediction of compression strength from other rock properties," Colo. Sch. Mines Q, 59(4B), 623-640 (1964).

    Google Scholar 

  39. A. Tugrul and I. H. Zarif, "Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey," Eng. Geol., 51, 303-317 (1999).

    Article  Google Scholar 

  40. E. Yasar and Y. Erdogan, "Estimation of rock physiomechanical properties using hardness methods," Eng. Geol., 71, 281-288 (2004).

    Article  Google Scholar 

  41. N. D. Nurgalieva and N. G. Nurgalieva, "Porosity estimation of carbonate rocks with multispec processing technique," ARPN J. Eng. Appl. Sci., 9, No. 1 (2014).

  42. P. K. Sharma and T. N. Singh, "A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength," // Bull. Eng. Geol. Environ., 67, 17-22 (2007), DOI. 10.1007/s10064-007-0109-y.

  43. S. Kahraman and T. Yeken, "Determination of physical properties of carbonate tocks from P-wave velocity," // Bull. Engineering Geol. Environ., 67, 227-281 (2008).

  44. S. Yagiz, "P-wave velocity test for assessment of geotechnical properties of some rock materials," // Bull. Mater. Sci., 34, 947-953 (2011).

  45. A. M. Sheraz, M. Z. Emad, M. Shahzad, and S. M. Arshad, "Relation between uniaxial compressive strength, point load index and sonic wave velocity for dolerite," // Pakistan Journal of Science, 66, 60-66 (2014).

  46. Anon, "Classification of rocks and soils for engineering geological mapping, Part 1. Rock and soil materials," Bull. Int. Eng. Geol., 19, 364-371 (1979).

  47. A. V. Moos and F. De Quervain, Technishe Gesteinkunde [in German], Verlag Birkhauser, Basel, 1948.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Osnovaniya, Fundamenty i Mekhanika Gruntov, No. 6, pp. 27-31, November-December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurtulus, C., CakIr, S. & Yoğurtcuoğlu, A.C. Ultrasound Study of Limestone Rock Physical and Mechanical Properties. Soil Mech Found Eng 52, 348–354 (2016). https://doi.org/10.1007/s11204-016-9352-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11204-016-9352-1

Keywords

Navigation