Skip to main content
Log in

The LISA Pathfinder Mission

Tracing Einstein’s Geodesics in Space

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

LISA Pathfinder, formerly known as SMART-2, is the second of the European Space Agency’s Small Missions for Advance Research and Technology, and is designed to pave the way for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission, by testing the core assumption of gravitational wave detection and general relativity: that free particles follow geodesics. The new technologies to be demonstrated in a space environment include: inertial sensors, high precision laser interferometry to free floating mirrors, and micro-Newton proportional thrusters. LISA Pathfinder will be launched on a dedicated launch vehicle in late 2011 into a low Earth orbit. By a transfer trajectory, the sciencecraft will enter its final orbit around the first Sun-Earth Lagrange point. First science results are expected approximately 3 months thereafter.

Here, we give an overview of the mission including the technologies being demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Abramovici et al., LIGO: The Laser Interferometer Gravitational-Wave Observatory. Science 256, 325 (1992)

    Article  ADS  Google Scholar 

  • F. Acernesse et al., Status of VIRGO. Class. Quantum Gravity 21, S385–S394 (2004)

    Article  ADS  Google Scholar 

  • B. Bertotti et al., A test of general relativity using radio links with the Cassini spacecraft. Nature 425, 374–376 (2003)

    Article  ADS  Google Scholar 

  • N. Brandt et al., Experiment Performance Budget. LISA Pathfinder document S2-ASD-RP-3036 (2008)

  • S. Buchman et al., The Gravity Probe B Relativity mission. Adv. Space Res. 25(6), 1177 (2000)

    Article  ADS  Google Scholar 

  • E. Canuto, A. Rolino, Nanobalance: An automated interferometric balance for micro-thrust measurement. ISA Trans. 43, 169–187 (2004)

    Article  Google Scholar 

  • L. Ceruti, D. Nicolini, Power Processing Control Units for FEEP Micro-Propulsion Subsystems, International Astronautic Congress (Glasgow, October 2008)

  • K. Danzmann et al., The GEO Project: A long baseline laser interferometer for the detection of gravitational waves. Lect. Not. Phys. 410, 184–209 (1992)

    Article  ADS  Google Scholar 

  • M. Drinkwater et al., GOCE: ESA’s first Earth explorer core mission. Space Sci. Ser. ISSI 18, 419 (2003)

    Article  ADS  Google Scholar 

  • A. Einstein, Preuss. Akad. Wiss. Berlin, Sitzungsberichte der Physikalisch-mathematischen Klasse, p. 688 (1916)

  • W. Fichter, P. Gath, S. Vitale, D. Bortoluzzi, LISA Pathfinder drag-free control system implications. Class. Quantum Gravity 22(10), s139–s148 (2005)

    Article  ADS  Google Scholar 

  • W. Fichter, A. Schleicher, S. Vitale, Drag-free control design with cubic test masses, in Lasers, Clocks, and Drag-Free Control, ed. by H.J. Dittus, C. Lämmerzahl, S. Turyshev. Astrophysics and Space Science Library, vol. 349 (Springer, Berlin, 2007a). ISBN:978-3-540-34376-9

    Google Scholar 

  • W. Fichter, A. Schleicher, S. Bennani, S. Wu, Closed loop performance and limitations of the LISA Pathfinder drag-free control system. AIAA 2007-6732, AIAA Guidance Navigation and Control Conference, 20–23 August 2007b, Hilton Head, South Carolina

  • F. Heine et al., Space qualified laser sources. Optical Sensing II. Proc. SPIE 6189, 61892I (2006)

    Article  Google Scholar 

  • R. Hulse, J. Taylor, Astrophys. J. 195, L51–L53 (1975)

    Article  ADS  Google Scholar 

  • T. Kane, R. Byer, Monolithic, unidirectional single-mode Nd:YAG ring laser. Opt. Lett. 10(2), 65–67 (1985)

    Article  ADS  Google Scholar 

  • J. Mester et al., The STEP mission: principles and baseline design. Class. Quantum Gravity 18, 2475 (2001)

    Article  MATH  ADS  Google Scholar 

  • W.-T. Ni, ASTROD—an overview. Int. J. Mod. Phys. D 11, 947 (2002)

    Article  ADS  Google Scholar 

  • D. Nicolini, LISA Pathfinder field emission thruster system development program, in 30th International Electric Propulsion Conference, IEPC-2007-363, Florence, 2007

  • A. Nobili et al., ‘Galileo Galilei’ flight experiment on the equivalence principle with field emission electric propulsion. Class. Quantum Gravity 13, A197 (1996)

    Article  MATH  ADS  Google Scholar 

  • R.D. Resenberg et al., Viking relativity experiment: verification of signal retardation by solar gravity. Astrophys. J. 234, L219 (1979)

    Article  ADS  Google Scholar 

  • D. Shaddock, Space based gravitational wave detection with LISA. Class. Quantum Gravity 25(11), 114012 (2008)

    Article  ADS  Google Scholar 

  • R. Takahashi et al., Status of TAMA300. Class. Quantum Gravity 21, S403–S408 (2004)

    Article  ADS  Google Scholar 

  • P. Touboul et al., MICROSCOPE, testing the equivalence principle in space. C. R. Phys. 2, 1271–1286 (2001)

    Google Scholar 

  • S.G. Turyschev et al., The laser astrometric test of relativity mission. Nucl. Phys. B 134, 171 (2004)

    Article  Google Scholar 

  • S. Vitale et al., LISA Pathfinder: Einstein’s Geodesic Explorer, ESA-SCI (2007), p. 1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe D. Racca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Racca, G.D., McNamara, P.W. The LISA Pathfinder Mission. Space Sci Rev 151, 159–181 (2010). https://doi.org/10.1007/s11214-009-9602-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-009-9602-x

PACS

Navigation