Skip to main content
Log in

Surface Properties of the Mars Science Laboratory Candidate Landing Sites: Characterization from Orbit and Predictions

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

This work describes the interpretation of THEMIS-derived thermal inertia data at the Eberswalde, Gale, Holden, and Mawrth Vallis Mars Science Laboratory (MSL) candidate landing sites and determines how thermophysical variations correspond to morphology and, when apparent, mineralogical diversity. At Eberswalde, the proportion of likely unconsolidated material relative to exposed bedrock or highly indurated surfaces controls the thermal inertia of a given region. At Gale, the majority of the landing site region has a moderate thermal inertia (250 to 410 J m−2 K−1 s−1/2), which is likely an indurated surface mixed with unconsolidated materials. The primary difference between higher and moderate thermal inertia surfaces may be due to the amount of mantling material present. Within the mound of stratified material in Gale, layers are distinguished in the thermal inertia data; the MSL rover could be traversing through materials that are both thermophysically and compositionally diverse. The majority of the Holden ellipse has a thermal inertia of 340 to 475 J m−2 K−1 s−1/2 and consists of bed forms with some consolidated material intermixed. Mawrth Vallis has a mean thermal inertia of 310 J m−2 K−1 s−1/2 and a wide variety of materials is present contributing to the moderate thermal inertia surfaces, including a mixture of bedrock, indurated surfaces, bed forms, and unconsolidated fines. Phyllosilicates have been identified at all four candidate landing sites, and these clay-bearing units typically have a similar thermal inertia value (400 to 500 J m−2 K−1 s−1/2), suggesting physical properties that are also similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • R.B. Anderson, J.F. Bell III, Geologic mapping and characterization of Gale Crater and implications for its potential as a Mars Science Laboratory landing site. Mars 5, 76–128 (2010). doi:10.1555/mars.2010.0004

    Article  ADS  Google Scholar 

  • R.E. Arvidson et al., Overview of the spirit Mars exploration rover mission to Gusev Crater: landing site to backstay rock in the Columbia Hills. J. Geophys. Res. 111, E02S01 (2006). doi:10.1029/2005JE002499

    Article  ADS  Google Scholar 

  • J.L. Bandfield, D. Rogers, M.D. Smith, P.R. Christensen, Atmospheric correction and surface spectral unit mapping using thermal emission imaging system data. J. Geophys. Res. 109, E10008 (2004). doi:10.1029/2004JE002289

    Article  ADS  Google Scholar 

  • J.L. Bandfield, A.D. Rogers, C.S. Edwards, The role of aqueous alteration in the formation of martian soils. Icarus 211, 157–171 (2011). doi:10.1016/j.icarus.2010.08.028

    Article  ADS  Google Scholar 

  • J.-P. Bibring et al., Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science 312, 400–404 (2006). doi:10.1126/science.1122659

    Article  ADS  Google Scholar 

  • N.A. Cabrol, E.A. Grin, Distribution, classification, and ages of martian impact crater lakes. Icarus 142, 160–172 (1999)

    Article  ADS  Google Scholar 

  • N.A. Cabrol, E.A. Grin, H.E. Newsom, R. Landheim, C.P. McKay, Hydrogeologic evolution of Gale Crater and its relevance to the exobiological exploration of Mars. Icarus 139, 235–245 (1999)

    Article  ADS  Google Scholar 

  • P.R. Christensen, D.L. Anderson, S.C. Chase, R.N. Clark, H.H. Kieffer, M.C. Malin, J.C. Pearl, J. Carpenter, N. Bandiera, F.G. Brown, S. Silverman, Thermal emission spectrometer experiment: Mars observer mission. J. Geophys. Res. 97(E5), 7719–7734 (1992)

    Article  ADS  Google Scholar 

  • P.R. Christensen, J.L. Bandfield, V.E. Hamilton, S.W. Ruff, H.H. Kieffer, T.N. Titus, M.C. Malin, R.V. Morris, M.D. Lane, R.L. Clark, B.M. Jakosky, M.T. Mellon, J.C. Pearl, B.J. Conrath, M.D. Smith, R.T. Clancy, R.O. Kuzmin, T. Roush, G.L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, M. Greenfield, Mars global surveyor thermal emission spectrometer experiment: investigation description and surface science results. J. Geophys. Res. 106(E10), 23,823–23,871 (2001)

    ADS  Google Scholar 

  • P.R. Christensen, J.L. Bandfield, J.F. Bell III, N. Gorelick, V.E. Hamilton, A. Ivanov, B.M. Jakosky, H.H. Kieffer, M.D. Lane, M.C. Malin, T. McConnochie, A.S. McEwen, H.Y. McSween Jr., G.L. Mehall, J.E. Moersch, K.H. Nealson, J.W. Rice Jr., M.I. Richardson, S.W. Ruff, M.D. Smith, T.N. Titus, M.B. Wyatt, Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results. Science 300(5628), 2056–2061 (2003)

    Article  ADS  Google Scholar 

  • P.R. Christensen, B.M. Jakosky, H.H. Kieffer, M.C. Malin, H.Y. McSween Jr., K. Nealson, G.L. Mehall, S.H. Silverman, S. Ferry, M. Caplinger, M. Ravine, The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey mission. Space Sci. Rev. 110, 85–130 (2004)

    Article  ADS  Google Scholar 

  • R.T. Clancy, B.J. Sandor, M.J. Wolff, P.R. Christensen, M.D. Smith, J.C. Pearl, B.J. Conrath, R.J. Wilson, An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere. J. Geophys. Res. 105(E4), 9553–9571 (2000)

    Article  ADS  Google Scholar 

  • K.S. Edgett, P.R. Christensen, The particle size of Martian aeolian dunes. J. Geophys. Res. 96(E5), 22,765–22,776 (1991)

    Article  ADS  Google Scholar 

  • C.S. Edwards, J.L. Bandfield, P.R. Christensen, R.L. Fergason, Global distribution of bedrock exposures on Mars using THEMIS high-resolution thermal inertia. J. Geophys. Res. 114, E11001 (2009). doi:10.1029/2009JE003363

    Article  ADS  Google Scholar 

  • R.L. Fergason, P.R. Christensen, Formation and erosion of layered materials: geologic and dust cycle history of eastern Arabia Terra, Mars. J. Geophys. Res. 113, E12001 (2008). doi:10.1029/2007JE002973

    Article  ADS  Google Scholar 

  • R.L. Fergason, P.R. Christensen, H.H. Kieffer, High-resolution thermal inertia derived from the Thermal Emission Imaging System (THEMIS): thermal model and applications. J. Geophys. Res. 111, E12004 (2006a). doi:10.1029/2006JE002735

    Article  ADS  Google Scholar 

  • R.L. Fergason, P.R. Christensen, J.F. Bell III, M.P. Golombek, K.E. Herkenhoff, H.H. Kieffer, Physical properties of the Mars exploration rover landing sites as inferred from Mini-TES derived thermal inertia. J. Geophys. Res. 111(E2), E02S21 (2006b). doi:10.1029/2005JE002583

    Article  Google Scholar 

  • J.A. Fountain, E.A. West, Thermal conductivity of particulate basalt as a function of density in simulated lunar and martian environments. J. Geophys. Res. 75(20), 4063–4069 (1970)

    Article  ADS  Google Scholar 

  • M.P. Golombek, J.A. Grant, T.J. Parker, D.M. Bass, J.A. Crisp, S.W. Squyres, A.F.C. Haldemann, M. Adler, W.J. Lee, N.T. Bridges, R.E. Arvidson, M.H. Carr, R.L. Kirk, P.C. Knocke, R.B. Roncoli, C.M. Weitz, J.T. Schofield, R.W. Zurek, P.R. Christensen, R.L. Fergason, F.S. Anderson, J.W. Rice, Selection of the Mars exploration rover landing sites. J. Geophys. Res. 108, 8072 (2003). doi:10.1029/2003JE002074

    Article  Google Scholar 

  • M.P. Golombek, R.E. Arvidson, J.F. Bell III, P.R. Christensen, J.A. Crisp, L.S. Crumpler, B.L. Ehlmann, R.L. Fergason, J.A. Grant, R. Greeley, A.F.C. Haldemann, D.M. Kass, T.J. Parker, J.T. Schofield, S.W. Squyres, R.W. Zurek, Assessment of Mars exploration rover landing site predictions. Nature 436, 44–48 (2005). doi:10.1038/nature03600

    Article  ADS  Google Scholar 

  • M.P. Golombek et al., Selection of the Mars science laboratory landing site. Space Sci. Rev., this issue (2012)

  • J.L. Gooding, Chemical weathering on Mars: thermodynamic stabilities of primary minerals (and their alteration products) from mafic igneous rocks. Icarus 33, 485–513 (1978)

    Article  ADS  Google Scholar 

  • J.A. Grant, T.J. Parker, Drainage evolution in the Margaritifer Sinus region, Mars. J. Geophys. Res. 107, 5066 (2002). doi:10.1029/2001JE001678

    Article  Google Scholar 

  • J.A. Grant, R.P. Irwin III, J.P. Grotzinger, R.E. Milliken, L.L. Tornabene, A.S. McEwen, C.M. Weitz, S.W. Squyres, T.D. Glotch, B.J. Thomson, HiRISE imaging of impact megabreccia and sub-meter aqueous strata in Holden Crater, Mars. Geology 36, 195–198 (2008). doi:10.1130/G24340A.1

    Article  ADS  Google Scholar 

  • J.A. Grant et al., The science process for selecting the landing site for the 2011 Mars Science Laboratory. Planet. Space Sci. 59, 1114–1127 (2011). doi:10.1016/j.pss.2010.06.016

    Article  ADS  Google Scholar 

  • R. Greeley, J.E. Guest, Geologic map of the eastern equatorial region of Mars, U.S. Geol. Surv. Misc. Invest. Map, I-1802-B (1987)

  • J. Grotzinger et al., Mars science laboratory mission, science investigation. Space Sci. Rev. (2012). doi:10.1007/s11214-012-9892-2

    Google Scholar 

  • S.W. Hobbs, D.J. Paull, M.C. Bourke, Aeolian processes and dune morphology in Gale Crater. Icarus 210, 102–115 (2010). doi:10.1016/j.icarus2010/06/006

    Article  ADS  Google Scholar 

  • B.M. Jakosky, The effects of nonideal surfaces on the derived thermal properties of Mars. J. Geophys. Res. 84(B14), 8252–8262 (1979)

    Article  ADS  Google Scholar 

  • D.J. Jerolmack, D. Mohrig, M.T. Zuber, S. Byrne, A minimum time for the formation of Holden Northeast fan, Mars. Geophys. Res. Lett. 31, L21701 (2004). doi:10.1029/2004GL021326

    Article  ADS  Google Scholar 

  • H.H. Kieffer, personal communciation (2011)

  • H.H. Kieffer, S.C. Chase Jr., E. Miner, G. Münch, G. Neugebauer, Preliminary report on infrared radiometric measurements from the Mariner 9 spacecraft. J. Geophys. Res. 78(20), 4291–4312 (1973)

    Article  ADS  Google Scholar 

  • H.H. Kieffer, T.Z. Martin, A.R. Peterfreund, B.M. Jakosky, E.D. Miner, F.D. Palluconi, Thermal and albedo mapping of Mars during the Viking primary mission. J. Geophys. Res. 82(28), 4249–4291 (1977)

    Article  ADS  Google Scholar 

  • K.W. Lewis, O. Aharonson, Stratigraphic analysis of the distributary fan in Eberswalde crater using stereo imagery. J. Geophys. Res. 111, E06001 (2006). doi:10.1029/2005JE002558

    Article  ADS  Google Scholar 

  • K. Lewis, O. Aharonson, J. Grotzinger, R. Kirk, A. McEwen, T. Suer, Quasi periodic bedding in the sedimentary rock record of Mars. Science 322, 1532–1535 (2008). doi:10.1126/science.1161870

    Article  ADS  Google Scholar 

  • M.C. Malin, K.S. Edgett, Sedimentary rocks of early Mars. Science 290, 1927–1937 (2000)

    Article  ADS  Google Scholar 

  • M.C. Malin, K.S. Edgett, Mars global surveyor Mars orbiter camera: interplanetary cruise through primary mission. J. Geophys. Res. 106, 23429–23570 (2001). doi:10.1029/2006JE002808

    Article  ADS  Google Scholar 

  • M.C. Malin, K.S. Edgett, Evidence for persistent flow and aqueous sedimentation on early Mars. Science 302, 1931–1934 (2003)

    Article  ADS  Google Scholar 

  • M.C. Malin, G.E. Danielson, A.P. Ingersoll, H. Masursky, J. Veverka, M.A. Ravine, T.A. Soulanille, Mars observer camera, J. Geophys. Res. 97(E5), 7699–7718 (1992)

    Article  ADS  Google Scholar 

  • M.C. Malin, J.F. Bell III, B.A. Cantor, M.A. Caplinger, W.M. Calvin, R.T. Clancy, K.S. Edgett, L. Edwards, R.M. Haberle, P.B. James, S.W. Lee, M.A. Ravine, P.C. Thomas, M.J. Wolff, Context camera investigation on board the Mars reconnaissance orbiter. J. Geophys. Res. 112, E05S04 (2007). doi:10.1029/2006JE002808

    Article  ADS  Google Scholar 

  • A.S. McEwen et al., Mars reconnaissance orbiter’s high resolution imaging science experiment (HiRISE). J. Geophys. Res. 112, E05S02 (2007). doi:10.1029/2005JE002605

    Article  Google Scholar 

  • M.T. Mellon, B.M. Jakosky, H.H. Kieffer, P.R. Christensen, High-resolution thermal inertia mapping from the Mars global surveyor thermal emission spectrometer. Icarus 148, 437–455 (2000)

    Article  ADS  Google Scholar 

  • J.R. Michalski, E.Z. Noe Dobrea, Evidence for a sedimentary origin of clay minerals in the Mawrth Vallis region, Mars. Geology 35, 951–954 (2007). doi:10.1130/G23854A.1

    Article  ADS  Google Scholar 

  • J.R. Michalski, R.L. Fergason, Composition and thermal inertia of the Mawrth Vallis region of Mars from TES and THEMIS data. Icarus 199, 25–48 (2009)

    Article  ADS  Google Scholar 

  • J.R. Michalski, J.-P. Bibring, F. Poulet, D. Loizeau, N. Mangold, E. Noe Dobrea, J.L. Bishop, J.J. Wray, N.K. McKeown, M. Parente, E. Hauber, F. Altieri, F.G. Carrozzo, P.B. Niles, The Mawrth Vallis region of Mars: a potential landing site for the Mars science laboratory (MSL) mission. Astrobiology 10(7), 687–703 (2010). doi:10.1089/ast.2010.0491

    Article  ADS  Google Scholar 

  • R.E. Milliken, D.L. Bish, Sources and sinks of clay minerals on Mars. Philos. Mag. 90, 2293–2308 (2010). doi:10.1080/14786430903573132

    Article  ADS  Google Scholar 

  • R.E. Milliken, J.P. Grotzinger, B.J. Thomson, Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater. Geophys. Res. Lett. 37, L04201 (2010). doi:10.1029/2009GL041870

    Article  Google Scholar 

  • J.M. Moore, A.D. Howard, Large alluvial fans on Mars. J. Geophys. Res. 110, E04005 (2005). doi:10.1029/2004JE002352

    Article  ADS  Google Scholar 

  • G. Neugebauer, G. Münch, H. Kieffer, S.C. Chase Jr., E. Miner, Mariner 1969 infrared radiometer results: temperature sand thermal properties of the martian surface. Astron. J. 76(8), 719–728 (1971)

    Article  ADS  Google Scholar 

  • F.D. Palluconi, H.H. Kieffer, Thermal inertia mapping of Mars from 60° S to 60° N. Icarus 45, 415–426 (1981)

    Article  ADS  Google Scholar 

  • S.M. Pelkey, B.M. Jakosky, Surficial geologic surveys of Gale Crater and Melas Chasma, Mars: integration of remote-sensing data. Icarus 160, 228–257 (2002)

    Article  ADS  Google Scholar 

  • S.M. Pelkey, B.M. Jakosky, P.R. Christensen, Surficial properties in Gale Crater, Mars, from Mars Odyssey THEMIS data. Icarus 167, 244–270 (2004)

    Article  ADS  Google Scholar 

  • J.B. Pollack, M.E. Ockert-Bell, M.E. Shepard, Viking Lander image analysis of martian atmospheric dust. J. Geophys. Res. 100(E3), 5235–5250 (1995)

    Article  ADS  Google Scholar 

  • M. Pondrelli, A. Baliva, S. Di Lorenzo, L. Marinangeli, A.P. Rossi, Complex evolution of paleolacustrine systems on Mars: an example from the Holden crater. J. Geophys. Res. 110, E04016 (2005). doi:10.1029/2004JE002335

    Article  ADS  Google Scholar 

  • M. Pondrelli, A.P. Rossi, L. Marinangeli, E. Huger, K. Gwinner, A. Baliva, S. Di Lorenzo, Evolution and depositional environments of the Eberswalde fan delta, Mars. Icarus 197, 429–451 (2008). doi:10.1016/j.icarus.2008.05.018

    Article  ADS  Google Scholar 

  • F. Poulet, J.-P. Bibring, J.F. Mustard, A. Gendrin, N. Mangold, Y. Langevin, R.E. Arvidson, B. Gondet, C. Gomez, OMEGA Team, Phyllosilicates on Mars and implications for early martian climate. Nature 438, 623–627 (2005)

    Article  ADS  Google Scholar 

  • F. Poulet, N. Mangold, D. Loizeau, J.-P. Bibring, Y. Langevin, J. Michalski, B. Gondet, Abundance of minerals in the phyllosilicate-rich units on Mars. Astron. Astrophys. 487, L41–L44 (2008)

    Article  ADS  Google Scholar 

  • M.A. Presley, P.R. Christensen, Thermal conductivity measurements of particulate materials, 2: results. J. Geophys. Res. 102, 6551–6566 (1997)

    Article  ADS  Google Scholar 

  • N.E. Putzig, M.T. Mellon, Thermal behavior of horizontally mixed surfaces on Mars. Icarus 191, 52–67 (2007a). doi:10.1016/j.icarus.2007.03.022

    Article  ADS  Google Scholar 

  • N.E. Putzig, M.T. Mellon, Apparent thermal inertia and the surface heterogeneity of Mars. Icarus 191, 68–94 (2007b). doi:10.1016/j.icarus.2007.05.013

    Article  ADS  Google Scholar 

  • M.S. Rice, S. Gupta, J.F. Bell III, N.H. Warner, Influence of fault-controlled topography on fluvio-deltaic sedimentary systems in Eberswalde crater, Mars. Geophys. Res. Lett. 38, L16203 (2011). doi:10.1029/2011GL048149

    Article  ADS  Google Scholar 

  • A.P. Rossi, G. Neukum, M. Pondrelli, S. van Gasselt, T. Zegers, E. Hauber, A. Chicarro, B. Foing, Large-scale spring deposits on Mars? J. Geophys. Res. 113, E08016 (2008). doi:10.1029/2007JE003062

    Article  ADS  Google Scholar 

  • S.W. Ruff, P.R. Christensen, Bright and dark regions on Mars: particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. J. Geophys. Res. 107, E12 (2002). doi:10.1029/2001JE001580

    Article  Google Scholar 

  • P.H. Schultz, A.B. Lutz, Polar wandering of Mars. Icarus 73, 91–141 (1988)

    Article  ADS  Google Scholar 

  • D.H. Scott, K.L. Tanaka, Geologic map of the western equatorial region of Mars, US Geological Survey Miscellaneous Investigation Series, Map I-1802-A, scale 1:15,000,000 (1986)

  • D.H. Scott, M.G. Chapman, Geologic and topographic maps of the Elysium paleolake basin, Mars, United States Geological Survey Series, Map I-2397, scale 1:5,000,000 (1995)

  • M.D. Smith, Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus 167, 148–165 (2004)

    Article  ADS  Google Scholar 

  • D. Smith, M. Zuber, S. Solomon, R. Phillips, J. Head, J. Garvin, W. Banerdt, D. Muhlemann, G. Pettengill, G. Neumann, F. Lemoine, J. Abshire, O. Aharonson, C. Brown, S. Hauck, A. Ivanov, P. McGovern, H. Zwally, T. Duxbury, The global topography of Mars and implications for surface evolution. Science 284, 1495–1503 (1999)

    Article  ADS  Google Scholar 

  • M.D. Smith, J.C. Pearl, B.J. Conrath, P.R. Christensen, Mars global surveyor thermal emission spectrometer (TES) observations of dust opacity during aerobreaking and science phasing. J. Geophys. Res. 105(E4), 9539–9552 (2000)

    Article  ADS  Google Scholar 

  • D.E. Smith, M.T. Zuber, H.V. Frey, J.B. Garvin, J.W. Head, D.O. Muhleman, G.H. Pettengill, R.J. Phillips, S.C. Solomon, H.J. Zwally, W.B. Banerdt, T.C. Duxbury, M.P. Golombek, F.G. Lemoine, G.A. Neumann, D.D. Rowlands, O. Aharonson, P.G. Ford, A.B. Ivanov, C.L. Johnson, P.J. McGovern, J.B. Abshire, R.S. Afzal, X. Sun, Mars orbiter laser altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106(E10), 23,689–23,722 (2001a)

    ADS  Google Scholar 

  • M.D. Smith, J.C. Pearl, B.J. Conrath, P.R. Christensen, One martian year of atmospheric observations by the thermal emission spectrometer. Geophys. Res. Lett. 28(22), 4263–4266 (2001b)

    Article  ADS  Google Scholar 

  • S.W. Squyres et al., The Spirit Rover’s Athena science investigation at Gusev Crater, Mars. Science 305, 794–799 (2004)

    Article  ADS  Google Scholar 

  • R. Sullivan, R. Arvidson, J.F. Bell III, R. Gellert, M. Golombek, R. Greeley, K. Herkenhoff, J. Johnson, S. Thompson, P. Whelley, J. Wray, Wind-driven particle mobility on Mars: insights from Mars exploration rover observations at “El Dorado” and surroundings at Gusev Crater. J. Geophys. Res. 113, E06S07 (2008). doi:10.1029/2008JE003101

    Article  ADS  Google Scholar 

  • R.E. Summons, J.P. Amend, D. Bish, R. Buick, G.D. Cody, D.J. Des Marais, G. Dromart, J.L. Eigenbrode, A.H. Knoll, D.Y. Sumner, Preservation of martian organic and environmental records: final report of the Mars biosignature working group. Astrobiology 11(2), 157–181 (2011). doi:10.1089/a/st.2010.0506

    Article  ADS  Google Scholar 

  • B.J. Thomson, N.T. Bridges, R. Milliken, A. Baldridge, S.J. Hook, J.K. Crowley, G.M. Marion, C.R. de Souza Filho, A.J. Brown, C.M. Weitz, Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars reconnaissance orbiter data. Icarus 214, 413–432 (2011). doi:10.1016/j.icarus.2011.02.002

    Article  ADS  Google Scholar 

  • M.G. Tomasko, L.R. Doose, M. Lemmon, P.H. Smith, E. Wegryn, Properties of dust in the martian atmosphere from the imager on Mars pathfinder. J. Geophys. Res. 104, 8987–9007 (1999)

    Article  ADS  Google Scholar 

  • A.F. Vaughan et al., Pancam and microscopic imager observations of dust on the Spirit rover: cleaning events, spectral properties, and aggregates. Mars 5, 129–145 (2010). doi:10.1555/mars.2010.0005

    Article  ADS  Google Scholar 

  • A.E. Wechsler, P.E. Glaser, Pressure effects on postulated lunar materials. Icarus 4, 352–377 (1965)

    Article  Google Scholar 

  • C.K. Wentworth, A scale of grade and class terms for clastic sediments. J. Geol. 30, 377–392 (1922)

    Article  ADS  Google Scholar 

  • S.A. Wilson, A.D. Howard, J.A. Grant, Geomorphic and stratigraphic analysis of Crater Terby and layered deposits north of Hellas basin, Mars. J. Geophys. Res. 112, E08009 (2007). doi:10.1029/2006JE002830

    Article  ADS  Google Scholar 

  • M.J. Wolff, R.T. Clancy, Constraints on the size of martian aerosols from thermal emission spectrometer observations. J. Geophys. Res. 108, E9 (2003). doi:10.1029/2003JE002057

    Article  Google Scholar 

  • M.J. Wolff et al., Constraints on dust aerosols from the Mars exploration rovers using MGS overflights and Mini-TES. J. Geophys. Res. 111, E12S17 (2006). doi:10.1029/2006JE002786

    Article  ADS  Google Scholar 

  • W. Woodside, J.H. Messmer, Thermal conductivity of porous media, I: unconsolidated sands. J. Appl. Phys. 32(9), 1688–1699 (1961)

    Article  ADS  Google Scholar 

  • J.J. Wray, B.L. Ehlmann, S.W. Squyres, J.F. Mustard, R.L. Kirk, Compositional stratigraphy of clay-bearing layered deposits at Mawrth Vallis, Mars. Geophys. Res. Lett. 35, L12202 (2008). doi:10.1029/2008GL034385

    Article  ADS  Google Scholar 

  • M.T. Zuber, D.E. Smith, S.C. Solomon, D.O. Muhleman, J.W. Head, J.B. Garvin, J.B. Abshire, J.L. Bufton, The Mars observer laser altimeter investigation. J. Geophys. Res. 97(E5), 7781–7797 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Attendance at the landing site workshops greatly enhanced our understanding of various components of each site. Specifically, discussions with Kenneth Edgett (MSSS), Justin Hagerty (USGS), Michael Kraft (ASU), and Ashwin Vasavada (JPL) on various aspects related to these sites greatly helped place our findings in a broader context. Kenneth Herkenhoff (USGS), Kenneth Tanaka (USGS), Kenneth Edgett (MSSS), and an anonymous reviewer provided comments that greatly improved the presentation of this work. Trent Hare (USGS) and Ryan Luk (then at ASU) helped produce products that have been released to the public (http://astrogeology.usgs.gov/MSL/; http://themis.asu.edu/landingsites). Ryan Luk was invaluable for helping develop mosaic scripts and generating early versions of the daytime IR, nighttime IR, and visible mosaics and the nighttime IR over daytime IR overlay images available online. Daytime IR, nighttime IR, qualitative (8-bit) thermal inertia, and visible image mosaic generation for the initial 36 proposed landing sites (as of June 2006) was funded by the Mars Odyssey Project Office. The thermal inertia analysis and generation and analysis of predicted temperature maps were funded by a JPL subcontract through the Critical Data Products program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Fergason.

Appendix: Thermal Inertia Derivation

Appendix: Thermal Inertia Derivation

The Thermal Emission Imaging Spectrometer (THEMIS) infrared (IR) data have an improved spatial resolution (100 m/pixel) over previous datasets, such as Mars Global Surveyor Thermal Emission Spectrometer (TES) or Viking Infrared Thermal Mapper. The THEMIS data set enables the modeling of surface physical characteristics to determine particle size information and identify surface exposures of bedrock, and allows these physical properties to be correlated to morphologic features. This data set can also facilitate an improved understanding of geologic processes that have influenced the Martian surface.

To derive thermal inertia from THEMIS data, we used the method of Fergason et al. (2006a). The brightness temperature of the surface is first determined by fitting a Planck curve to band 9 (centered at 12.57 μm) calibrated radiance that has been corrected for instrumental effects. This wavelength range was chosen because it has the highest signal to noise ratio and is relatively insensitive to atmospheric dust. The THEMIS band 9 temperatures are converted to a thermal inertia by interpolation within a 7-dimensional look-up table using latitude, season, local solar time, atmospheric dust opacity, thermal inertia, elevation (atmospheric pressure), and albedo as input parameters.

The look-up table includes a thermal inertia range of 24 to 3000 J m−2 K−1 s−1/2, and values exceeding 1800 have been observed (e.g. Edwards et al. 2009). This thermal inertia range is significantly larger than that used in the TES standard model (maximum of 800), and allows the detection of exposures of consolidated materials or bedrock on the surface. This extended thermal inertia range was required because of: (1) the higher spatial resolution of THEMIS; (2) initial results from THEMIS nighttime temperatures suggesting the presence of bedrock (e.g. Christensen et al. 2003); and (3) the fact that many regions on Mars were saturated at the maximum value of thermal inertia in the TES model (Fergason et al. 2006a).

This look-up table is generated using a thermal model developed by H. H. Kieffer, which was derived from the Viking IRTM thermal model (Kieffer et al. 1977) with several modifications, the most significant being an improved atmospheric component. This improved atmospheric component consists of a one-layer atmosphere that is spectrally gray at solar wavelengths with the direct and diffuse illuminations computed using a 2-stream delta-Eddington model. The effects of 3-dimensional blocks on the surface, condensate clouds, and the latent heat of water ice are not considered (Kieffer 2011). This model can incorporate the effects of a radiatively-coupled sloping surface at any azimuth, but for the nominal thermal inertia calculations, slopes are not considered. Generally, slopes below 10° at all azimuths have a small effect on the nighttime surface temperature, and therefore the thermal inertia. Higher slope angles may be problematic, but this conclusion is dependent on the slope azimuth and the season. Due to the potential for slopes to be a factor, surfaces with slopes greater than ∼10° were interpreted with caution (Fergason et al. 2006a).

Model parameters appropriate for the THEMIS image and the measured band 9 surface temperatures are then used to interpolate the thermal inertia between the calculated look-up table node values. Interpolation is performed on a pixel-by-pixel basis using season, latitude, and local solar time from spacecraft ephemeris. The remaining model input parameters are obtained from external datasets. The albedo of features in the THEMIS image is determined from the TES albedo binned at 8 pixels per degree (Christensen et al. 2001). Elevation information is ascertained from Mars Orbiter Laser Altimeter (MOLA) elevation (Zuber et al. 1992; Smith et al. 1999, 2001a) binned at 128 elements per degree. Finally, the opacity is inferred by using the THEMIS image season to select a TES dust opacity value from data binned at 0.3 pixel per degree in latitude and 0.13 pixel per degree in longitude for every 15° Ls during the first Martian year of MGS mapping (e.g. Smith et al. 2001b).

Uncertainties in the THEMIS derived thermal inertia values are primarily due to (1) instrument calibration; (2) uncertainties in model input parameters, including albedo and opacity, at the resolution of the THEMIS instrument; and (3) thermal model uncertainties. Random and systematic errors in the THEMIS surface measurements result in an absolute calibration accuracy of THEMIS nighttime temperature between 1.8 K and 2.8 K (Fergason et al. 2006a), and a relative precision of 1.2 K (P.R. Christensen, THEMIS calibration report, http://themis-data.asu.edu/pds/calib/calib.pdf, (2005) Accessed 15 August 2011). TES albedo, TES atmospheric dust opacity, and MOLA elevation values are incorporated as model input parameters at a coarser resolution than that of the THEMIS temperature data, and thus may not be adequately taking into account the effects of these parameters on the thermal inertia derivation. TES atmospheric dust opacity is used for the first Martian year of MGS mapping when there were no global dust storms (Smith et al. 2000, 2001b). We assume that the amount of dust in the atmosphere is repeatable from year to year; this has been shown to be a reasonable approximation during seasons devoid of major dust storms (Clancy et al. 2000; Smith 2004). To avoid dusty atmospheric conditions, we do not determine thermal inertia when the atmospheric opacity is greater than 0.40 (visible wavelength). Elevation (used to determine the atmospheric pressure) has a minor effect on the thermal inertia, and the atmospheric dust opacity does not vary significantly over the area of a THEMIS image (Clancy et al. 2000; Smith et al. 2001b), so these two approximations are likely adequate. However, sub-TES-pixel variations in albedo that affect the nighttime surface temperature in THEMIS data likely affect the accuracy at which thermal inertia values can be calculated, and regions where albedo is varying over short distances (less than 3 km) are interpreted with caution. Considering the uncertainties in both the THEMIS instrument calibration and input parameters, the absolute accuracy of the THEMIS thermal inertia is ∼20 % (for additional detail, see Fergason et al. 2006a).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fergason, R.L., Christensen, P.R., Golombek, M.P. et al. Surface Properties of the Mars Science Laboratory Candidate Landing Sites: Characterization from Orbit and Predictions. Space Sci Rev 170, 739–773 (2012). https://doi.org/10.1007/s11214-012-9891-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-012-9891-3

Keywords

Navigation