Skip to main content
Log in

A Novel Micro-cantilever Based Angular Speed Sensor Controlled Piezoelectrically and Tuned by Electrostatic Actuators

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

In this paper a novel sensor is proposed to measure rotational shafts speed. The sensor is composed of a micro-cantilever, with a piezoelectric actuator layer on the upper surface and a sensor layer on the lower surface. The sensor is attached to the shaft while the deflection of the micro-cantilever, due to centrifugal force of the rotating shaft, is actively controlled. Therefore the sensor deflection is suppressed and the controller output or the piezoelectric actuating voltage is employed to measure the angular speed of the shaft (Force balance technique). The micro-cantilever is symmetrically located between two electrodes giving it a wider operating range and also increasing its sensitivity. Imposing different electrostatic bias voltages alters the equivalent stiffness of the structure and consequently affects the micro-beam deflections and the controller outputs. Simulation results reveal that for lower velocities the resolution increases by increasing the bias voltages. It is shown that decreasing the micro-beam length increases the measurable velocity range and conversely decreasing the electrodes gap decreases the maximum measurable speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mortet, V., Petersen, R., Haenen, K., & Olieslaeger, M. D. (2006). Wide range pressure sensor based on a piezoelectric bimorph micro-cantilever. Applied Physics Letters, 88, 133511.

    Article  Google Scholar 

  2. Fujii, E., Takayama, R., Nomura, K., Murata, A., Hirasawa, T., Tomozawa, A., et al. (2007). Preparation of (0 0 1)-oriented Pb(Zr, Ti)O3 thin films and their piezoelectric applications. IEEE Transaction on Ultrasonic Ferroelectrics and Frequency Control, 54, 2431–2438.

    Article  Google Scholar 

  3. Rezazadeh, G., Lotfiani, A., & Khalilarya, S. (2009). On the modeling of a MEMS-based capacitive wall shear stress sensor. Measurement, 42, 202–207.

    Article  Google Scholar 

  4. Rezazadeh, G., Ghanbari, M., Mirzaee, I., & Keyvani, A. (2010). On the modeling of a piezoelectrically actuated micro sensor for simultaneous measurement of fluids viscosity and density. Measurement, 43, 1516–1524.

    Article  Google Scholar 

  5. Renaudin, L., Bonnardot, F., Musy, O., Doray, J. B., & Rémond, D. (2010). Natural roller bearing fault detection by angular measurement of true instantaneous angular speed. Mechanical Systems and Signal Processing, 24, 1998–2011.

    Article  Google Scholar 

  6. Jywe, W. Y., & Chen, C. J. (2005). The development of a high-speed spindle measurement system using a laser diode and a quadrants sensor. International Journal of Machine Tools and Manufacture, 45, 1162–1170.

    Article  Google Scholar 

  7. Ben Sasi, A., Payne, B., York, A., Gu, F., Ball, A. (2001). Condition monitoring of electric motors using instantaneous angular speed. In Proceedings of the maintenance and reliability conference (MARCON), Gatlinburg, TN, USA.

  8. Sweeney, P. J., & Randall, R. B. (1996). Gear transmission error measurement using phase demodulation. Journal of Mechanical Engineering Science, 210(3), 201–213.

    Article  Google Scholar 

  9. Zheng, S., & Han, B. (2013). Investigations of an integrated angular velocity measurement and attitude control system for spacecraft using magnetically suspended double-gimbal CMGs. Advances in Space Research, 51, 2216–2228.

    Article  Google Scholar 

  10. Gu, F., Yesilyurt, I., Li, Y., Harris, G., & Ball, A. (2006). An investigation of the effects of measurement noise in the use of instantaneous angular speed for machine diagnosis. Mechanical Systems and Signal Processing, 20, 1444–1460.

    Article  Google Scholar 

  11. Espadafor, F. J. J., Villanueva, J. A. B., Guerrero, D. P., García, M. T., Trujillo, E. C., & Vacas, F. F. (2014). Measurement and analysis of instantaneous torque and angular velocity variations of a low speed two stroke diesel engine. Mechanical Systems and Signal Processing, 49, 135–153.

    Article  Google Scholar 

  12. Lay, Y. L., & Chen, W. Y. (1998). Rotation measurement using a circular moirégrating. Optics & Laser Technology, 30, 539–544.

    Article  Google Scholar 

  13. Etuke, E. O., & Bonnecaze, R. T. (1998). Measurement of angular velocities using electrical impedance tomography. Flow Measurement and Instrumentation, 9, 159–169.

    Article  Google Scholar 

  14. Shah-Mohammadi-Azar, A., Azimloo, H., Rezazadeh, G., Shabani, R., & Tousi, B. (2013). On the modeling of a capacitive angular speed measurement sensor. Measurement, 46, 3976–3981.

    Article  Google Scholar 

  15. Wang, S., Li, Q., & Guan, B. (2007). A computer vision method for measuring angular velocity. Optics and Lasers in Engineering, 45, 1037–1048.

    Article  Google Scholar 

  16. Yoon, S. W., Lee, S.W., Perkins, N.C., & Najafi, K. (2007). Vibration sensitivity of MEMS tuning fork gyroscopes. In IEEE sensors conference, Atlanta, GA, USA, pp. 115–119.

  17. Yoon, S. W., Lee, S. W., & Najafi, K. (2011). Vibration sensitivity analysis of MEMS vibratory ring gyroscopes. Sensors and Actuators A, 171, 163–177.

    Article  Google Scholar 

  18. Tzou, H. S., & Tseng, C. I. (1990). Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: A piezoelectric finite element approach. Journal of Sound and Vibration, 138, 17–34.

    Article  Google Scholar 

  19. Choi, S. B., Park, Y. K., & Fukuda, T. (1998). A proof of concept, investigation on active vibration control of hybrid smart structures. Mechatronics, 8, 673–689.

    Article  Google Scholar 

  20. Yong, L., Onoda, J., & Minesugi, K. (2002). Simultaneous optimization of piezoelectric actuator placement and feedback for vibration suppression. Acta Astronautica, 50, 335–341.

    Article  Google Scholar 

  21. Ha, K. S., Keilers, C., & Chang, F. K. (1992). Finite element analysis of composite structures containing distributed piezoceramic sensors and actuators. AIAA Journal, 30, 772–780.

    Article  MATH  Google Scholar 

  22. Lam, K. Y., Peng, X. Q., Liu, G. R., & Reddy, J. N. (1997). A finite element model for piezoelectric composite laminates. Smart Materials and Structures, 6, 583–591.

    Article  Google Scholar 

  23. Zhang, W., Meng, G., & Li, H. (2006). Adaptive vibration control of micro-cantilever beam with piezoelectric actuator in MEMS. International Journal of Advanced Manufacturing Technology, 28, 321–327.

    Article  Google Scholar 

  24. Sadek, I., Kucuk, I., & Zeini, E. (2009). Optimal boundary control of dynamics responses of piezo actuating micro-beams. Applied Mathematical Modelling, 33, 3343–3353.

    Article  MathSciNet  MATH  Google Scholar 

  25. Jahromi-Shirazi, M., Salarieh, H., Alasty, A., & Shabani, R. (2012). Tip tracking control of a micro-cantilever Timoshenko beam via piezoelectric actuator. Journal of Vibration and Control. doi:10.1177/1077546312447837.

    Google Scholar 

  26. Schoeftner, J., & Krommer, M. (2012). Single point vibration control for a passive piezoelectric Bernoulli–Euler beam subjected to spatially varying harmonic loads. Acta Mechanica, 223, 1983–1998.

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, Y. H., Xie, S. L., & Zhang, X. N. (2008). Vibration control of a simply supported cylindrical shell using a laminated piezoelectric actuator. Acta Mechanica, 196, 87–101.

    Article  MATH  Google Scholar 

  28. Rezazadeh, G., Madinei, H., & Shabani, R. (2012). Study of parametric oscillation of an electrostatically actuated micro-beam using variational iteration method. Applied Mathematical Modelling, 36, 430–443.

    Article  MathSciNet  MATH  Google Scholar 

  29. Abreu, G. L., & Ribeiro, J. (2004). Spatial H control of a flexible beam containing piezoelectric sensors and actuators. ABCM Symposium Series in Mechatronic, 1, 243–253.

    Google Scholar 

  30. Marinaki, M., Marinakis, Y., & Stavroulakis, G. (2011). Vibration control of beams with piezoelectric sensors and actuators using particle swarm optimization. Expert System with Applications, 38, 6872–6883.

    Article  Google Scholar 

Download references

Acknowledgments

The authors, hereby, acknowledge the comments of their colleague Farzin G. Golzar on the technical aspects and English structure of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Shabani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah-Mohammadi-Azar, A., Shabani, R. & Rezazadeh, G. A Novel Micro-cantilever Based Angular Speed Sensor Controlled Piezoelectrically and Tuned by Electrostatic Actuators. Sens Imaging 16, 8 (2015). https://doi.org/10.1007/s11220-015-0110-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-015-0110-7

Keywords

Navigation