Skip to main content
Log in

Exact distributional computations for Roy’s statistic and the largest eigenvalue of a Wishart distribution

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Computational expressions for the exact CDF of Roy’s test statistic in MANOVA and the largest eigenvalue of a Wishart matrix are derived based upon their Pfaffian representations given in Gupta and Richards (SIAM J. Math. Anal. 16:852–858, 1985). These expressions allow computations to proceed until a prespecified degree of accuracy is achieved. For both distributions, convergence acceleration methods are used to compute CDF values which achieve reasonably fast run times for dimensions up to 50 and error degrees of freedom as large as 100. Software that implements these computations is described and has been made available on the Web.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions, 9th edn. Dover, New York (1970)

    Google Scholar 

  • Aitken, A.: On Bernoulli’s numerical solution of algebraic equations. Proc. R. Soc. Edinb. 46, 289–305 (1926)

    MATH  Google Scholar 

  • Butler, R.W.: Saddlepoint Approximations with Applications. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  • Butler, R.W., Wood, A.T.A.: Laplace approximation for hypergeometric functions of matrix argument. Ann. Stat. 30, 1155–1177 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Butler, R.W., Wood, A.T.A.: Approximation of power in multivariate analysis. Stat. Comput. 15, 281–287 (2005)

    Article  MathSciNet  Google Scholar 

  • Chapra, S.C.: Applied Numerical Methods with MATLAB for Engineers and Scientists. McGraw-Hill, New York (2004)

    Google Scholar 

  • Clark, W.D., Gray, H.L., Adams, J.E.: A note on the T-transformation of Lubkin. J. Res. Natl. Bur. Stand. B Math. Sci. 73, 25–29 (1969)

    MATH  MathSciNet  Google Scholar 

  • Cohen, H., Villegas, F.R., Zaigler, D.: Convergence acceleration of alternating series. Exp. Math. 9, 3–12 (2000)

    MATH  Google Scholar 

  • Constantine, A.G.: Some noncentral distribution problems in multivariate analysis. Ann. Math. Stat. 34, 1270–1285 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  • Goodwin, E.T. (ed.): Modern Computing Methods, 2nd edn. Philosophical Library, New York (1961)

    Google Scholar 

  • Gupta, R.D., Richards, D.S.P.: Hypergeometric functions of scalar matrix argument are expressible in terms of classical hypergeometric functions. SIAM J. Math. Anal. 16, 852–858 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  • Johnson, N.L., Kotz, S.: Continuous Multivariate Distributions. Wiley, New York (1972)

    MATH  Google Scholar 

  • Johnstone, I.M.: On the distribution of the largest eigenvalue in principal components analysis. Ann. Stat. 29, 295–327 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Johnstone, I.M.: Multivariate analysis and Jacobi ensembles: largest eigenvalue, Tracy-Widom limits and rates of convergence. Ann. Stat. 36, 2638–2716 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Johnstone, I.M.: Approximate null distribution of the largest root in multivariate analysis. Ann. Appl. Stat. 3 (2009, to appear)

  • Knopp, K.: Theory and Application of Infinite Series. Dover, New York (1990)

    Google Scholar 

  • Kres, H.: Statistical Tables for Multivariate Analysis. Springer, New York (1983)

    MATH  Google Scholar 

  • Maple 11: Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario (2007)

  • Muirhead, R.J.: Aspects of Multivariate Statistical Theory. Wiley, New York (1982)

    Book  MATH  Google Scholar 

  • Nanda, D.N.: J. Indian Soc. Agric. Stat. 3, 175–177 (1951)

    MathSciNet  Google Scholar 

  • Pillai, K.C.S.: On the distribution of the largest or the smallest root of a matrix in multivariate analysis. Biometrika 43, 122–127 (1956)

    MATH  MathSciNet  Google Scholar 

  • Pillai, K.C.S.: On the distribution of the largest characteristic root of a matrix in multivariate analysis. Biometrika 52, 405–414 (1965)

    MATH  MathSciNet  Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in FORTRAN 77: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  • Roy, S.N.: The individual sampling distribution of the maximum, the minimum, and any intermediate of the p statistics on the null hypothesis. Sankhyà 8, 133–158 (1945)

    Google Scholar 

  • Scheid, F.: Schaum’s Outline of Theory and Problems of Numerical Analysis, 2nd edn. McGraw-Hill, New York (1989)

    Google Scholar 

  • Sugiyama, T.: Distribution of the largest latent root and the smallest latent root of the generalized B statistic and F statistic in multivariate analysis. Ann. Math. Stat. 38, 1152–1159 (1967)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald W. Butler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butler, R.W., Paige, R.L. Exact distributional computations for Roy’s statistic and the largest eigenvalue of a Wishart distribution. Stat Comput 21, 147–157 (2011). https://doi.org/10.1007/s11222-009-9154-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-009-9154-7

Keywords

Navigation