Skip to main content
Log in

A semiparametric Bayesian approach to extreme value estimation

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

This paper is concerned with extreme value density estimation. The generalized Pareto distribution (GPD) beyond a given threshold is combined with a nonparametric estimation approach below the threshold. This semiparametric setup is shown to generalize a few existing approaches and enables density estimation over the complete sample space. Estimation is performed via the Bayesian paradigm, which helps identify model components. Estimation of all model parameters, including the threshold and higher quantiles, and prediction for future observations is provided. Simulation studies suggest a few useful guidelines to evaluate the relevance of the proposed procedures. They also provide empirical evidence about the improvement of the proposed methodology over existing approaches. Models are then applied to environmental data sets. The paper is concluded with a few directions for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asmussen, S.: Applied Probability and Queues. Wiley, New York (1987)

    MATH  Google Scholar 

  • Behrens, C., Gamerman, D., Lopes, H.F.: Bayesian analysis of extreme events with threshold estimation. Stat. Model. 4, 227–244 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Bermudez, P., Turkman, M.A., Turkman, K.F.: A predictive approach to tail probability estimation. Extremes 4, 295–314 (2001)

    Article  MathSciNet  Google Scholar 

  • Cabras, S., Castellanos, M.A., Gamerman, D.: A default Bayesian approach for regression on extremes. Stat. Model. (2011, accepted)

  • Castellanos, M.A., Cabras, S.: A default Bayesian procedure for the generalized Pareto distribution. J. Stat. Plan. Inference 137, 473–483 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Coles, S.G.: Extreme Value Theory an Applications. Kluver Academic, Dordrecht (2001)

    Google Scholar 

  • Coles, S.G., Tawn, J.A.: A Bayesian analysis of extreme rainfall data. Appl. Stat. 45, 463–478 (1996)

    Article  Google Scholar 

  • Cunnane, C.: Note on the Poisson assumption in partial duration series model. Water Resour. Res. 15, 489–494 (1979)

    Article  Google Scholar 

  • Dalal, S., Hall, W.: Approximating priors by mixtures of natural conjugate priors. J. R. Stat. Soc., Ser. B 45, 278–286 (1983)

    MathSciNet  MATH  Google Scholar 

  • Davison, A.C., Smith, R.L.: Models for exceedances over high thresholds (with discussion). J. R. Stat. Soc., Ser. B 52, 393–342 (1990)

    MathSciNet  MATH  Google Scholar 

  • Dey, D., Kuo, L., Sahu, S.: A Bayesian predictive approach to determining the number of components in a mixture distribution. Stat. Comput. 5, 297–305 (1995)

    Article  Google Scholar 

  • Diebolt, J., Robert, C.: Estimation of finite mixture distributions by Bayesian sampling. J. R. Stat. Soc., Ser. B 56, 363–375 (1994)

    MathSciNet  MATH  Google Scholar 

  • Diebolt, J., El-Aroui, M., Garrido, M., Girard, S.: Quasi-conjugate Bayes estimates for gpd parameters and application to heavy tails modelling. Extremes 1, 57–78 (2005)

    Article  MathSciNet  Google Scholar 

  • Doornik, JA: Ox: Object Oriented Matrix Programming, 4.1 console version. Nuffield College, Oxford University, London (1996)

    Google Scholar 

  • Embrechts, P., Küppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Springer, New York (1997)

    MATH  Google Scholar 

  • Fisher, R.A., Tippett, L.H.C.: On the estimation of the frequency distributions of the largest and smallest number of a sample. Proc. Camb. Philos. Soc. 24, 180–190 (1928)

    Article  MATH  Google Scholar 

  • Frigessi, A., Haug, O., Rue, H.: A dynamic mixture model for unsupervised tail estimation without threshold selection. Extremes 5, 219–235 (2002)

    Article  MathSciNet  Google Scholar 

  • Frühwirth-Schnatter, S.: Markov chain Monte Carlo estimation of classical and dynamic switching and mixture models. J. Am. Stat. Assoc. 96, 194–209 (2001)

    Article  MATH  Google Scholar 

  • Gamerman, D., Lopes, H.F.: Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, 2nd ed. Chapman and Hall/CRC, Baton Rouge (2006)

    MATH  Google Scholar 

  • Gramacy, R., Lee, K.: Bayesian treed Gaussian process models with an application to computer modeling. J. Am. Stat. Assoc. 103, 1119–1130 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Jenkinson, A.F.: The frequency distribution of the annual maximum (or minimum) values of meteorological events. Q. J. R. Meteorol. Soc. 81, 158–171 (1955)

    Article  Google Scholar 

  • Lopes, H.F., Nascimento, F.F., Gamerman, D.: Generalized Pareto models with time-varying tail behavior. Technical Report LES:UFRJ, in preparation (2011)

  • von Mises, R.: La distribution de la plus grande de nvaleurs. Am. Math. Soc. 2, 271–294 (1954)

    Google Scholar 

  • Nascimento, F.F., Gamerman, D., Lopes, H.F.: Regression models for exceedance data via the full likelihood. Environ. Ecol. Stat. (2011, to appear)

  • Pickands, J.: Statistical inference using extreme order statistics. Ann. Stat. 3, 119–131 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Richardson, S., Green, P.: On Bayesian analysis of mixtures with an unknown number of components. J. R. Stat. Soc., Ser. B 59, 731–792 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Roberts, G.O., Rosenthal, J.S.: Examples of adaptive mcmc. Journal of Computation and Graphical. Statistics 18, 349–367 (2009)

    MathSciNet  Google Scholar 

  • Roeder, K., Wasserman, L.: Practical Bayesian density estimation using mixtures of normals. J. Am. Stat. Assoc. 92, 894–902 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978)

    Article  MATH  Google Scholar 

  • Smith, R.L.: Threshold models for sample extremes. Statistical extremes and applications 621–638 (1984)

  • Spiegelhalter, D.J., Best, N.G., Carlin, B.P., Linde, A.: Bayesian measures of model complexity and fit. J. R. Stat. Soc. B 64, 583–639 (2002)

    Article  MATH  Google Scholar 

  • Tancredi, A., Anderson, C., O’Hagan, A.: Accounting for threshold uncertainty in extreme value estimation. Extremes 9, 87–106 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Titterington, D., Smith, A.F.M., Makov, U.: Statistical Analysis of Finite Mixture Distributions. Wiley, New York (1985)

    MATH  Google Scholar 

  • Wiper, M., Rios Insua, D., Ruggeri, F.: Mixtures of gamma distributions with applications. J. Comput. Graph. Stat. 10, 440–454 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Ferraz do Nascimento.

Rights and permissions

Reprints and permissions

About this article

Cite this article

do Nascimento, F.F., Gamerman, D. & Lopes, H.F. A semiparametric Bayesian approach to extreme value estimation. Stat Comput 22, 661–675 (2012). https://doi.org/10.1007/s11222-011-9270-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-011-9270-z

Keywords

Navigation