Skip to main content
Log in

Fast automatic Bayesian cubature using lattice sampling

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Automatic cubatures approximate integrals to user-specified error tolerances. For high-dimensional problems, it is difficult to adaptively change the sampling pattern, but one can automatically determine the sample size, n, given a reasonable, fixed sampling pattern. We take this approach here using a Bayesian perspective. We postulate that the integrand is an instance of a Gaussian stochastic process parameterized by a constant mean and a covariance kernel defined by a scale parameter times a parameterized function specifying how the integrand values at two different points in the domain are related. These hyperparameters are inferred or integrated out using integrand values via one of three techniques: empirical Bayes, full Bayes, or generalized cross-validation. The sample size, n, is increased until the half-width of the credible interval for the Bayesian posterior mean is no greater than the error tolerance. The process outlined above typically requires a computational cost of \(O(N_{\text {opt}}n^3)\), where \(N_{\text {opt}}\) is the number of optimization steps required to identify the hyperparameters. Our innovation is to pair low discrepancy nodes with matching covariance kernels to lower the computational cost to \(O(N_{\text {opt}} n \log n)\). This approach is demonstrated explicitly with rank-1 lattice sequences and shift-invariant kernels. Our algorithm is implemented in the Guaranteed Automatic Integration Library (GAIL).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Briol, F.-X., Oates, C.J., Girolami, M., Osborne, M.A., Sejdinovic, D.: Probabilistic integration: a role in statistical computation? Stat. Sci. 34, 1–22 (2019)

    Article  MathSciNet  Google Scholar 

  • Choi, S.-C.T., Ding, Y., Hickernell, F.J., Jiang, L., Jiménez Rugama, L.A., Li, D., Jagadeeswaran, R., Tong, X., Zhang, K., Zhang, Y., Zhou, X.: GAIL: guaranteed automatic integration library (versions 1.0–2.3). MATLAB Software. http://gailgithub.github.io/GAIL_Dev/ (2019). Accessed 3 Sept 2019

  • Cools, R., Nuyens, D. (eds.): Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, Springer Proceedings in Mathematics and Statistics, 2016, vol. 163. Springer, Berlin (2014)

  • Craven, P., Wahba, G.: Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math. 31, 307–403 (1979)

    MathSciNet  MATH  Google Scholar 

  • Diaconis, P.: Bayesian numerical analysis. In: Gupta, S.S., Berger, J.O. (eds.) Statistical Decision Theory and Related Topics IV, Papers from the 4th Purdue Symposium, West Lafayette, Indiana 1986, vol. 1, pp. 163–175. Springer, New York (1988)

  • Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  • Dick, J., Kuo, F., Sloan, I.H.: High dimensional integration—the quasi-Monte Carlo way. Acta Numer. 22, 133–288 (2013). https://doi.org/10.1017/S0962492913000044

    Article  MathSciNet  MATH  Google Scholar 

  • Genz, A.: Comparison of methods for the computation of multivariate normal probabilities. Comput. Sci. Stat. 25, 400–405 (1993)

    Google Scholar 

  • Golub, G.H., Heath, M., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21, 215–223 (1979)

    Article  MathSciNet  Google Scholar 

  • Hickernell, F.J.: Quadrature error bounds with applications to lattice rules. SIAM J. Numer. Anal. 33, 1995–2016 (1996). Corrected printing of sections 3–6 in ibid., 34, 853–866 (1997)

  • Hickernell, F.J.: The trio identity for quasi-Monte Carlo error analysis. In: Glynn, P., Owen, A. (eds.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Stanford, USA, August 2016, Springer Proceedings in Mathematics and Statistics, pp. 3–27. Springer, Berlin (2018). https://doi.org/10.1007/978-3-319-91436-7

  • Hickernell, F.J., Jiménez Rugama, L.A.: Reliable adaptive cubature using digital sequences. In: Cools and Nuyens, pp. 367–383 (2016). arXiv:1410.8615 [math.NA]

  • Hickernell, F.J., Niederreiter, H.: The existence of good extensible rank-1 lattices. J. Complex. 19, 286–300 (2003)

    Article  MathSciNet  Google Scholar 

  • Hickernell, F.J., Jiménez Rugama, L.A., Li, D.: Adaptive quasi-Monte Carlo methods for cubature. In: Dick, J., Kuo, F.Y., Woźniakowski, H. (eds.) Contemporary Computational Mathematics—A Celebration of the 80th Birthday of Ian Sloan, pp. 597–619. Springer, Berlin (2018). https://doi.org/10.1007/978-3-319-72456-0

  • Jiménez Rugama, L.A., Hickernell, F.J.: Adaptive multidimensional integration based on rank-1 lattices. In: Cools and Nuyens, pp. 407–422 (2016). arXiv:1411.1966

  • Keister, B.D.: Multidimensional quadrature algorithms. Comput. Phys. 10, 119–122 (1996). https://doi.org/10.1063/1.168565

    Article  MathSciNet  Google Scholar 

  • Nuyens, D.: https://people.cs.kuleuven.be/~dirk.nuyens/qmc-generators/genvecs/exod2_base2_m20.txt (2017). Accessed 3 Sept 2019

  • O’Hagan, A.: Bayes–Hermite quadrature. J. Stat. Plan. Inference 29, 245–260 (1991). https://doi.org/10.1016/0378-3758(91)90002-V

    Article  MathSciNet  MATH  Google Scholar 

  • Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W., Dalhuis, A.B.O.: Digital Library of Mathematical Functions. http://dlmf.nist.gov/ (2018). Accessed 3 Sept 2019

  • Rasmussen, C.E., Ghahramani, Z.: Bayesian Monte Carlo. In: Thrun, S., Saul, L.K., Obermayer, K. (eds.) Advances in Neural Information Processing Systems, vol. 15, pp. 489–496. MIT Press, Cambridge (2003)

    Google Scholar 

  • Rasmussen, C.E., Williams, C.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  • Ritter, K.: Average-Case Analysis of Numerical Problems. Lecture Notes in Mathematics, vol. 1733. Springer, Berlin (2000)

    Book  Google Scholar 

  • Sidi, A.: Further extension of a class of periodizing variable transformations for numerical integration. J. Comput. Appl. Math. 221, 132–149 (2008)

    Article  MathSciNet  Google Scholar 

  • Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford University Press, Oxford (1994)

    MATH  Google Scholar 

  • Wahba, G.: Spline models for observational data. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 59. SIAM, Philadelphia (1990)

Download references

Acknowledgements

This research was supported in part by the National Science Foundation Grants DMS-1522687 and DMS-1638521 (SAMSI). The authors would like to thank the organizers of the SAMSI-Lloyds-Turing Workshop on Probabilistic Numerical Methods, where a preliminary version of this work was discussed. The authors also thank Chris Oates and Sou-Cheng Choi for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jagadeeswaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Details of the full Bayes posterior density for \(\mu \)

Appendix: Details of the full Bayes posterior density for \(\mu \)

To simplify, we drop the dependence of \(c_{0{\varvec{\theta }}}\), \(\varvec{c}_{\varvec{\theta }}\), and \({\mathsf {C}}_{\varvec{\theta }}\) on \({\varvec{\theta }}\) in the notation below. Starting from the Bayesian formula for the posterior density for \(\mu \) at the beginning of Sect. 2.2.2 with the non-informative prior, it follows that

$$\begin{aligned}&\rho _{\mu |\varvec{f}}(z | \varvec{y}) \propto \int _{0}^\infty \int _{-\infty }^\infty \rho _{\mu | m, s^2, \varvec{f}}(z | \xi , \lambda , \varvec{y})\\&\quad \rho _{\varvec{f}| m, s^2} (\varvec{y}| \xi , \lambda ) \, \varvec{\rho }_{m,s^2}(\xi ,\lambda ) \, \text {d}{\xi }\text {d}{\lambda }\\&\quad \propto \displaystyle \int _{0}^\infty \frac{1}{\lambda ^{(n+3)/2}} \int _{-\infty }^\infty \exp \\&\quad \biggl ( -\frac{1}{2\lambda }\biggl \{ \frac{ [z - \xi (1 - \varvec{c}^T {\mathsf {C}}^{-1} \varvec{1}) - \varvec{c}^T {\mathsf {C}}^{-1} \varvec{y}]^2}{c_0 -\varvec{c}^T {\mathsf {C}}^{-1} \varvec{c}} \\&\quad + (\varvec{y}- \xi \varvec{1})^T {\mathsf {C}}^{-1}(\varvec{y}- \xi \varvec{1}) \biggr \} \biggr ) \, \text {d}{\xi }\text {d}{\lambda }\\&\quad \text {by } (7), (8) \; \text {and} \; \rho _{m,s^2}(\xi ,\lambda ) \propto 1/\lambda \\&\propto \displaystyle \int _{0}^\infty \frac{1}{\lambda ^{(n+3)/2}} \int _{-\infty }^\infty \exp \left( -\frac{\alpha \xi ^2 -2 \beta \xi + \gamma }{2\lambda (c_0 -\varvec{c}^T {\mathsf {C}}^{-1} \varvec{c})} \right) \, \text {d}{\xi }\text {d}{\lambda }, \end{aligned}$$

where

$$\begin{aligned} \alpha&= (1 - \varvec{c}^T {\mathsf {C}}^{-1} \varvec{1})^2 + \varvec{1}^T {\mathsf {C}}^{-1} \varvec{1}(c_0 -\varvec{c}^T {\mathsf {C}}^{-1} \varvec{c}),\\ \beta&=(1 - \varvec{c}^T {\mathsf {C}}^{-1} \varvec{1})(z - \varvec{c}^T {\mathsf {C}}^{-1} \varvec{y})\\&\quad +\, \varvec{1}^T {\mathsf {C}}^{-1} \varvec{y}(c_0 -\varvec{c}^T {\mathsf {C}}^{-1} \varvec{c}),\\ \gamma&= (z - \varvec{c}^T {\mathsf {C}}^{-1} \varvec{y})^2 + \varvec{y}^T {\mathsf {C}}^{-1} \varvec{y}(c_0 -\varvec{c}^T {\mathsf {C}}^{-1} \varvec{c}). \end{aligned}$$

In the derivation above and below, factors that are independent of \(\xi \), \(\lambda \), or z can be discarded since we only need to preserve the proportion. But, factors that depend on \(\xi \), \(\lambda \), or z must be kept. Completing the square, \( \alpha \xi ^2 -2 \beta \xi + \gamma = \alpha (\xi -\beta /\alpha )^2 - (\beta ^2/\alpha ) + \gamma , \) allows us to evaluate the integrals with respect to \(\xi \) and \(\lambda \):

$$\begin{aligned} \rho _{\mu |\varvec{f}}(z | \varvec{y})&\propto \displaystyle \int _{0}^\infty \frac{1}{\lambda ^{(n+3)/2}} \exp \left( -\frac{ \gamma - \beta ^2/\alpha }{2\lambda (c_0 -\varvec{c}^T {\mathsf {C}}^{-1} \varvec{c})} \right) \\&\quad \times \int _{-\infty }^\infty \exp \left( -\frac{\alpha (\xi -\beta /\alpha )^2}{2\lambda (c_0 -\varvec{c}^T {\mathsf {C}}^{-1} \varvec{c})} \right) \, \text {d}{\xi }\text {d}{\lambda }\\&\propto \displaystyle \int _{0}^\infty \frac{1}{\lambda ^{(n+2)/2}} \exp \left( -\frac{ \gamma - \beta ^2/\alpha }{2\lambda (c_0 -\varvec{c}^T {\mathsf {C}}^{-1} \varvec{c})} \right) \text {d}{\lambda }\\&\propto \left( \gamma - \frac{\beta ^2}{\alpha }\right) ^{-n/2} \\&\propto \left( \alpha \gamma - \beta ^2\right) ^{-n/2}. \end{aligned}$$

Finally, we simplify the key term via straightforward calculations to the following:

$$\begin{aligned} \alpha \gamma - \beta ^2 \propto 1 + \frac{(z - {\widehat{\mu }}_{\mathrm{EB}})^2}{(n-1)s_{\text {full}}^2}, \end{aligned}$$

where

$$\begin{aligned}&{\widehat{\sigma }}_{\text {full}}^2 := \frac{1}{n-1} \varvec{y}^T\left[ {\mathsf {C}}^{-1} - \frac{ {\mathsf {C}}^{-1} \varvec{1}\varvec{1}^T {\mathsf {C}}^{-1}}{\varvec{1}^T {\mathsf {C}}^{-1} \varvec{1}} \right] \varvec{y}\\&\quad \left[ \frac{(1 - \varvec{c}^T {\mathsf {C}}^{-1} \varvec{1})^2}{\varvec{1}^T {\mathsf {C}}^{-1} \varvec{1}} + (c_0 -\varvec{c}^T {\mathsf {C}}^{-1} \varvec{c}) \right] . \end{aligned}$$

This completes the derivation of (13).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagadeeswaran, R., Hickernell, F.J. Fast automatic Bayesian cubature using lattice sampling. Stat Comput 29, 1215–1229 (2019). https://doi.org/10.1007/s11222-019-09895-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-019-09895-9

Keywords

Navigation