Skip to main content
Erschienen in: Strength of Materials 2/2021

09.07.2021 | SCIENTIFIC AND TECHNICAL SECTION

Analysis of Irradiation Swelling and Irradiation Creep Models with the Stress Effect Account in the Problems of Inelastic Strain Mechanics. Part 1. Formulation of Constitutive Equations

verfasst von: O. Yu. Chirkov

Erschienen in: Strength of Materials | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modern models of irradiation swelling and irradiation creep are considered, in which the damaging dose, irradiation temperature, and influence of stress state on swelling and creep of irradiated material are taken into account. Using these models, constitutive equations of material behavior are formulated, which makes it possible to describe the non-isothermal processes of inelastic strain, taking into account irradiation swelling and irradiation creep strains. The loading process is broken down into separate computational stages, and for each of them the equations of plastic flow and irradiation creep are integrated within the loading stage. Through integration, constitutive equations for the full stress and strain components are derived, which allows the processes of active loading, unloading, and reloading to be described. The irreversible strains in these equations include accumulated plastic strains, irradiation swelling, and irradiation creep strains. The derived equations are treated as constitutive equations for irradiation creep, in which creep strain is defined as strain that includes instantaneous plastic strain and creep strain. Elastic-plastic strain curves that take into account the accumulated damaging dose and irradiation temperature are transformed into a functional dependence that describes the strain of irradiated material depending on the intensity of irradiation creep strain growth during the loading stage. The application of the formulated equations to the solution of practical problems contributes to the persistence of computational processes that makes it possible to use extended loading stages for calculations. At the same time, the study of the properties of the obtained constitutive equations is considerably simplified in comparison with the analysis of plasticity and creep equations in finite increments. Initial prerequisites for the formulation of constitutive equations of irradiation creep based on the full model of swelling, which takes into account the accumulated irreversible strain, are outlined.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. N. Kiselevskii, Changes in Mechanical Properties of Steels and Alloys under Irradiation Exposure [in Russian], Naukova Dumka, Kiev (1977). V. N. Kiselevskii, Changes in Mechanical Properties of Steels and Alloys under Irradiation Exposure [in Russian], Naukova Dumka, Kiev (1977).
2.
Zurück zum Zitat G. S. Pisarenko and V. N. Kiselevskii, Strength and Plasticity of Materials in Irradiation Flows [in Russian], Naukova Dumka, Kiev (1979). G. S. Pisarenko and V. N. Kiselevskii, Strength and Plasticity of Materials in Irradiation Flows [in Russian], Naukova Dumka, Kiev (1979).
3.
Zurück zum Zitat V. N. Kiselevskii, Strength of Structural Materials of Nuclear Reactors [in Russian], Naukova Dumka, Kiev (1990). V. N. Kiselevskii, Strength of Structural Materials of Nuclear Reactors [in Russian], Naukova Dumka, Kiev (1990).
4.
Zurück zum Zitat N. V. Sharyi, V. P. Semishkin, V. A. Piminov, and Yu. G. Dragunov, Strength of the Main Equipment and Pipelines of WWER Reactor Plants [in Russian], AT, Moscow (2004). N. V. Sharyi, V. P. Semishkin, V. A. Piminov, and Yu. G. Dragunov, Strength of the Main Equipment and Pipelines of WWER Reactor Plants [in Russian], AT, Moscow (2004).
5.
Zurück zum Zitat S. N. Votinov, V. I. Prokhorov, and Z. E. Ostrovskii, Irradiated Stainless Steels [in Russian], Nauka, Moscow (1987). S. N. Votinov, V. I. Prokhorov, and Z. E. Ostrovskii, Irradiated Stainless Steels [in Russian], Nauka, Moscow (1987).
6.
Zurück zum Zitat Yu. V. Konobeev, A. V. Subbotin, and S. I. Golubov, “The theory of void and interstitial dislocation loop growth in irradiated metals,” Radiat. Eff. Defect. S., 20, No. 4, 265–271 (1973).CrossRef Yu. V. Konobeev, A. V. Subbotin, and S. I. Golubov, “The theory of void and interstitial dislocation loop growth in irradiated metals,” Radiat. Eff. Defect. S., 20, No. 4, 265–271 (1973).CrossRef
7.
Zurück zum Zitat Yu. V. Konobeev and V. A. Pechenkin, “On the nucleation mechanism of vacancy pores in metals and under irradiation,” in: Atomic Science and Technology Issues. Ser. Physics of Irradiation Damage and Irradiation Materials Science [in Russian], Issue 1, Moscow (1978), pp. 3–7. Yu. V. Konobeev and V. A. Pechenkin, “On the nucleation mechanism of vacancy pores in metals and under irradiation,” in: Atomic Science and Technology Issues. Ser. Physics of Irradiation Damage and Irradiation Materials Science [in Russian], Issue 1, Moscow (1978), pp. 3–7.
8.
Zurück zum Zitat Yu. V. Konobeev and V. A. Pechenkin, “State of the theory of irradiation porosity in metals,” in: Irradiation Defects in Metal Crystals [in Russian], Nauka, Alma-Ata (1978). Yu. V. Konobeev and V. A. Pechenkin, “State of the theory of irradiation porosity in metals,” in: Irradiation Defects in Metal Crystals [in Russian], Nauka, Alma-Ata (1978).
9.
Zurück zum Zitat V. N. Bykov and Yu. V. Konobeev, “Radiation damages of structural materials of fast reactors,” Atom. Énerg., 43, No. 1, 20–27 (1977). V. N. Bykov and Yu. V. Konobeev, “Radiation damages of structural materials of fast reactors,” Atom. Énerg., 43, No. 1, 20–27 (1977).
10.
Zurück zum Zitat A. A. Sorokin, B. Z. Margolin, I. P. Kursevich, et al., “Effect of neutron irradiation on the mechanical properties of materials of internals of WWER-type reactors,” Vopr. Materialoved., No. 2 (66), 131–151 (2011). A. A. Sorokin, B. Z. Margolin, I. P. Kursevich, et al., “Effect of neutron irradiation on the mechanical properties of materials of internals of WWER-type reactors,” Vopr. Materialoved., No. 2 (66), 131–151 (2011).
11.
Zurück zum Zitat F. A. Garner, “Irradiation performance of cladding and structural steels in liquid metal reactors,” Materials Science and Technology: A Comprehensive Treatment, 10A, 419–543 (1994). F. A. Garner, “Irradiation performance of cladding and structural steels in liquid metal reactors,” Materials Science and Technology: A Comprehensive Treatment, 10A, 419–543 (1994).
12.
Zurück zum Zitat F. A. Garner and D. L. Porter, “Irradiation creep and swelling of AISI 316 to exposures of 130 dpa at 385–400°C,” J. Nucl. Mater., 212–215, 604–607 (1994). F. A. Garner and D. L. Porter, “Irradiation creep and swelling of AISI 316 to exposures of 130 dpa at 385–400°C,” J. Nucl. Mater., 212–215, 604–607 (1994).
13.
Zurück zum Zitat B. Z. Margolin, I. P. Kursevich, A. A. Sorokin, et al., “Embrittlement and fracture toughness of highly irradiated austenitic steels for vessel internals of WWER type reactors. Part 2. Relation between irradiation swelling and irradiation embrittlement. Physical and mechanical behavior,” Strength Mater., 42, No. 2, 144–153 (2010), https://doi.org/https://doi.org/10.1007/s11223-010-9201-9. B. Z. Margolin, I. P. Kursevich, A. A. Sorokin, et al., “Embrittlement and fracture toughness of highly irradiated austenitic steels for vessel internals of WWER type reactors. Part 2. Relation between irradiation swelling and irradiation embrittlement. Physical and mechanical behavior,” Strength Mater., 42, No. 2, 144–153 (2010), https://​doi.​org/​https://​doi.​org/​10.​1007/​s11223-010-9201-9.
14.
Zurück zum Zitat N. K. Vasina, B. Z. Margolin, A. G. Gulenko, and I. P. Kursevich, “Radiation swelling of austenitic steels. Influence of various factors, processing of experimental data and formulation of determining equations,” Vopr. Materialoved., No. 4 (48), 69–88 (2006). N. K. Vasina, B. Z. Margolin, A. G. Gulenko, and I. P. Kursevich, “Radiation swelling of austenitic steels. Influence of various factors, processing of experimental data and formulation of determining equations,” Vopr. Materialoved., No. 4 (48), 69–88 (2006).
15.
Zurück zum Zitat F. Garner, E. Gilbert, and D. Porter, “Stress-enhanced swelling of metals during irradiation,” in: D. Kramer, H. Brager, and J. Perrin (Eds.), Effects of Radiation on Materials, ASTM International, West Conshohocken, PA (1981), pp. 680–697, https://doi.org/https://doi.org/10.1520/STP28244S. F. Garner, E. Gilbert, and D. Porter, “Stress-enhanced swelling of metals during irradiation,” in: D. Kramer, H. Brager, and J. Perrin (Eds.), Effects of Radiation on Materials, ASTM International, West Conshohocken, PA (1981), pp. 680–697, https://​doi.​org/​https://​doi.​org/​10.​1520/​STP28244S.
16.
Zurück zum Zitat D. L. Porter, M. L. Takata, and E. L. Wood, “Direct evidence for stress-enhanced swelling in type 316 stainless steel,” J. Nucl. Mater., 116, No. 2/3, 272–276 (1983).CrossRef D. L. Porter, M. L. Takata, and E. L. Wood, “Direct evidence for stress-enhanced swelling in type 316 stainless steel,” J. Nucl. Mater., 116, No. 2/3, 272–276 (1983).CrossRef
17.
Zurück zum Zitat V. S. Neustroev, Z. E. Ostrovskii, V. K. Shamardin, “Stress effect on irradiation swelling and vacancy porosity parameters of neutron irradiated austenitic steels,” Fiz. Metal. Metalloved., 86, No. 1, 115–125 (1998). V. S. Neustroev, Z. E. Ostrovskii, V. K. Shamardin, “Stress effect on irradiation swelling and vacancy porosity parameters of neutron irradiated austenitic steels,” Fiz. Metal. Metalloved., 86, No. 1, 115–125 (1998).
18.
Zurück zum Zitat B. Z. Margolin, A. I. Murashova, and V. S. Neustroev, “Stress effect on irradiation swelling of austenitic steels,” Vopr. Materialoved., No. 4 (68), 124–139 (2011). B. Z. Margolin, A. I. Murashova, and V. S. Neustroev, “Stress effect on irradiation swelling of austenitic steels,” Vopr. Materialoved., No. 4 (68), 124–139 (2011).
19.
Zurück zum Zitat B. Z. Margolin, A. I. Murashova, and V. S. Neustroev, “Analysis of the influence of type of stress state on radiation swelling and radiation creep of austenitic steels,” Strength Mater., 44, No. 3, 227–240 (2012), https://doi.org/https://doi.org/10.1007/s11223-012-9376-3. B. Z. Margolin, A. I. Murashova, and V. S. Neustroev, “Analysis of the influence of type of stress state on radiation swelling and radiation creep of austenitic steels,” Strength Mater., 44, No. 3, 227–240 (2012), https://​doi.​org/​https://​doi.​org/​10.​1007/​s11223-012-9376-3.
20.
Zurück zum Zitat A. Yu. Chirkov, “On the correctness of the well-known mathematical model of irradiation-induced swelling with the influence of stresses in the problems of elastic-plastic deformation mechanics,” Strength Mater., 52, No. 2, 183–198 (2020), https://doi.org/https://doi.org/10.1007/s11223-020-00165-y. A. Yu. Chirkov, “On the correctness of the well-known mathematical model of irradiation-induced swelling with the influence of stresses in the problems of elastic-plastic deformation mechanics,” Strength Mater., 52, No. 2, 183–198 (2020), https://​doi.​org/​https://​doi.​org/​10.​1007/​s11223-020-00165-y.
21.
Zurück zum Zitat B. Margolin, V. Fedorova, A. Sorokin, et al., “The mechanisms of material degradation under neutron irradiation for WWER internals and methods for structural integrity assessment,” in: Proc. of the Int. Conf. “Structural Integrity and Life of NPP Equipment” (Oct. 2–5, 2012, Kiev), Kiev (2012). B. Margolin, V. Fedorova, A. Sorokin, et al., “The mechanisms of material degradation under neutron irradiation for WWER internals and methods for structural integrity assessment,” in: Proc. of the Int. Conf. “Structural Integrity and Life of NPP Equipment” (Oct. 2–5, 2012, Kiev), Kiev (2012).
22.
Zurück zum Zitat O. V. Makhnenko, E. A. Velikoivanenko, and V. Mirzov, “Redistribution of residual welding stresses in the WWER-1000 reactor vessel internals during operation,” Avtomat. Svarka, No. 11, 1–7 (2014). O. V. Makhnenko, E. A. Velikoivanenko, and V. Mirzov, “Redistribution of residual welding stresses in the WWER-1000 reactor vessel internals during operation,” Avtomat. Svarka, No. 11, 1–7 (2014).
23.
Zurück zum Zitat O. V. Makhnenko, I. V. Mirzov, and V. B. Porokhonko, “Analysis of the Impact of residual welding stresses on swelling and stress state of VVER-1000 reactor pressure vessel during operation,” Izv. TulGU. Tekhn. Nauki, Issue 6, Part 2, 187–200 (2015). O. V. Makhnenko, I. V. Mirzov, and V. B. Porokhonko, “Analysis of the Impact of residual welding stresses on swelling and stress state of VVER-1000 reactor pressure vessel during operation,” Izv. TulGU. Tekhn. Nauki, Issue 6, Part 2, 187–200 (2015).
24.
Zurück zum Zitat O. V. Makhnenko and I. V. Mirzov, “Two-dimensional numerical analysis of irradiation swelling in WWER-1000 reactor baffle with variation of input data on volumetric heat generation and damaging dose,” Strength Mater., 46, No. 5, 689–699 (2014), https://doi.org/https://doi.org/10.1007/s11223-014-9603-1. O. V. Makhnenko and I. V. Mirzov, “Two-dimensional numerical analysis of irradiation swelling in WWER-1000 reactor baffle with variation of input data on volumetric heat generation and damaging dose,” Strength Mater., 46, No. 5, 689–699 (2014), https://​doi.​org/​https://​doi.​org/​10.​1007/​s11223-014-9603-1.
25.
Zurück zum Zitat O. V. Makhnenko and I. V. Mirzov, “Investigation of the stress-strain state of austenitic steel welded structures under irradiation,” Avtomat. Svarka, No. 1, 7–12 (2013). O. V. Makhnenko and I. V. Mirzov, “Investigation of the stress-strain state of austenitic steel welded structures under irradiation,” Avtomat. Svarka, No. 1, 7–12 (2013).
26.
Zurück zum Zitat O. V. Makhnenko, S. M. Kandala, and M. V. Cherkashin, “Improvement of methods for the assessment of irradiation swelling and progressive form change of WWER-1000 NPP reactor vessel components,” Yader. Radiats. Bezp., No. 2 (82), 38-45 (2019). O. V. Makhnenko, S. M. Kandala, and M. V. Cherkashin, “Improvement of methods for the assessment of irradiation swelling and progressive form change of WWER-1000 NPP reactor vessel components,” Yader. Radiats. Bezp., No. 2 (82), 38-45 (2019).
27.
Zurück zum Zitat A. Yu. Chirkov and V. V. Kharchenko, “Special features of computational assessment of the change in shape of WWER-1000 reactor core baffle in view of irradiation-induced swelling,” Strength Mater., 52, No. 3, 339–352 (2020), https://doi.org/https://doi.org/10.1007/s11223-020-00184-9. A. Yu. Chirkov and V. V. Kharchenko, “Special features of computational assessment of the change in shape of WWER-1000 reactor core baffle in view of irradiation-induced swelling,” Strength Mater., 52, No. 3, 339–352 (2020), https://​doi.​org/​https://​doi.​org/​10.​1007/​s11223-020-00184-9.
28.
Zurück zum Zitat O. Yu. Chirkov, V. V. Kharchenko, V. I. Kravchenko, and S. Kobel’skyi, “Calculated evaluation of the form change of VVER-1000 heat exchanger during operation,” Yader. Radiats. Bezp., No. 3 (87), 13–20 (2020). O. Yu. Chirkov, V. V. Kharchenko, V. I. Kravchenko, and S. Kobel’skyi, “Calculated evaluation of the form change of VVER-1000 heat exchanger during operation,” Yader. Radiats. Bezp., No. 3 (87), 13–20 (2020).
29.
Zurück zum Zitat M. E. Babeshko and V. G. Savchenko, “Elastoplastic axisymmetric strain of shells under thermoloading and irradiation irradiation,” Prikl. Mekh., 55, No. 6, 46–55 (2019). M. E. Babeshko and V. G. Savchenko, “Elastoplastic axisymmetric strain of shells under thermoloading and irradiation irradiation,” Prikl. Mekh., 55, No. 6, 46–55 (2019).
30.
Zurück zum Zitat L. M. Kachanov, Fundamentals of Plasticity Theory [in Russian], Nauka, Moscow (1969). L. M. Kachanov, Fundamentals of Plasticity Theory [in Russian], Nauka, Moscow (1969).
31.
Zurück zum Zitat A. Yu. Chirkov, “Construction of two-level integration schemes for the equations of plasticity in the theory of deformation along the paths of small curvature,” Strength Mater., 44, No. 6, 645–667 (2012), https://doi.org/https://doi.org/10.1007/s11223-012-9420-3. A. Yu. Chirkov, “Construction of two-level integration schemes for the equations of plasticity in the theory of deformation along the paths of small curvature,” Strength Mater., 44, No. 6, 645–667 (2012), https://​doi.​org/​https://​doi.​org/​10.​1007/​s11223-012-9420-3.
Metadaten
Titel
Analysis of Irradiation Swelling and Irradiation Creep Models with the Stress Effect Account in the Problems of Inelastic Strain Mechanics. Part 1. Formulation of Constitutive Equations
verfasst von
O. Yu. Chirkov
Publikationsdatum
09.07.2021
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 2/2021
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-021-00276-0

Weitere Artikel der Ausgabe 2/2021

Strength of Materials 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.