Skip to main content
Log in

Intermolecular hydrogen bonds in hetero-complexes of biologically active aromatic ligands: Monte Carlo simulations results

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

We report results of the Monte Carlo simulations of systems containing heterodimers of biological active ligands and water molecules. The study was designed to identify the possible formation of intermolecular hydrogen bonds in such systems in order to investigate the molecular mechanisms of hetero-association of aromatic ligands in aqueous solution. The geometry optimization and the calculation of the atomic charges of free ligands were carried out at DFT/B3LYP level of theory. Monte Carlo simulations with Metropolis algorithm were used to determine the low energy conformations of heterodimers in water clusters. The analysis of the Monte Carlo simulation results allows us to describe in detail the hydration properties of all investigated heterodimers and to determine the intermolecular hydrogen bonds between the functional donor–acceptor groups for some of hetero-associates under investigation. In the case of heterodimers without intermolecular hydrogen bonds, the additional stabilization of these hetero-complexes can be explained by the formation the water bridges between donor and acceptor groups of the ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Evstigneev M (2010) DNA-binding aromatic drug molecules: physico-chemical interactions and their biological roles. Lambert Academic Publishing, Saarbrücken

    Google Scholar 

  2. Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed Engl 42:1210–1250

    Article  CAS  Google Scholar 

  3. Evstigneev MP (2013) Physicochemical mechanisms of synergistic biological action of combinations of aromatic heterocyclic compounds. Org Chem Int 2013: Article ID 278143 (doi:10.1155/2013/278143)

  4. Davies DB, Djimant LN, Veselkov AN (1996) 1H NMR investigation of self-association of aromatic drug molecules in aqueous solution. Structural and thermodynamical analysis. J Chem Soc Faraday Trans 92:383–390

    Article  CAS  Google Scholar 

  5. Lyles MB, Cameron IL, Rawls HR (2001) Structural basis for the binding affinity of xanthines with the DNA intercalator acridine orange. J Med Chem 44:4650–4660

    Article  CAS  Google Scholar 

  6. Kim JY, Kim S, Papp M, Park K, Pinal R (2010) Hydrotropic solubilization of poorly water-soluble drugs. J Pharm Sci 99:3953–3965

    Article  CAS  Google Scholar 

  7. Karawajew L, Glibin EN, Maleev VY, Czerwony G, Droken B, Davies DB, Veselkov AN (2000) Role of crown-like side chains in the biological activity of substituted-phenoxazone drugs. Anticancer Drug Des 15:331–338

    CAS  Google Scholar 

  8. Lyles MB, Cameron IL (2002) Caffeine and other xanthines as cytochemical blockers and removers of heterocyclic DNA intercalators from chromatin. Cell Biol Int 26:145–154

    Article  CAS  Google Scholar 

  9. Davies DB, Veselkov DA, Djimant LN, Veselkov AN (2001) Heteroassociation of caffeine and aromatic drugs and their competitive binding with a DNA oligomer. Eur Biophys J 30:354–366

    Article  CAS  Google Scholar 

  10. Piosik J, Wasielewski K, Woziwodzka A, Śledź W, Gwizdek-Wiśniewska A (2010) De-intercalation of ethidium bromide and propidium iodine from DNA in the presence of caffeine. Cent Eur J Biol 5:59–66

    CAS  Google Scholar 

  11. Ioannides C, Yoxall V (2003) Antimutagenic activity of tea: role of polyphenols. Curr Opin Clin Nutr Metab Care 6:649–656

    Article  CAS  Google Scholar 

  12. Adel AL, Dorr RT, Liddi JD (1993) The effects of anticancer drug sequence in experimental combination chemotherapy. Cancer Invest 11:15–24

    Article  CAS  Google Scholar 

  13. Davies DB, Evstigneev MP, Veselkov DA, Veselkov AN (2005) Hetero-association of anticancer antibiotics in aqueous solution: NMR and molecular mechanics analysis. Biophys Chem 117:111–118

    Article  CAS  Google Scholar 

  14. Piosik J, Zdunek M, Kapuscinski J (2002) The modulation by xanthines of the DNA-damaging effect of polycyclic aromatic agents: Part II. The stacking complexes of caffeine with doxorubicin and mitoxantrone. Biochem Pharm 63:635–646

    Article  CAS  Google Scholar 

  15. Piosik J, Ulanowska K, Gwizdek-Wiśniewska A, Czyź A, Kapuściński J, Węgrzyn G (2003) Alleviation of mutagenic effects of polycyclic aromatic agents (quinacrine mustard, ICR-191 and ICR-170) by caffeine and pentoxifylline. Mutat Res 530:47–57

    Article  CAS  Google Scholar 

  16. Ulanowska K, Piosik J, Gwizdek-Wiśniewska A, Węgrzyna G (2005) Formation of stacking complexes between caffeine (1,2,3-trimethylxanthine) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine may attenuate biological effects of this neurotoxin. Bioorg Chem 33:402–413

    Article  CAS  Google Scholar 

  17. Ulanowska K, Piosik J, Gwizdek-Wiśniewska A, Węgrzyna G (2007) Impaired mutagenic activities of MPDP+(1-methyl-4-phenyl-2,3-dihydropyridine) and MPP+(1-methyl-4-phenylpyridinium) due to their interactions with methylxanthines. Bioorg Med Chem 15:5150–5157

    Article  CAS  Google Scholar 

  18. Woziwodzka A, Gołuński G, Wyrzykowski D, Kaźmierkiewicz R, Piosik J (2013) Caffeine and other methylxanthines as interceptors of food-borne aromatic mutagens: inhibition of Trp-P-1 and Trp-P-2 mutagenic activity. Chem Res Toxicol 26:1660–1673

    Article  CAS  Google Scholar 

  19. Waters ML (2002) Aromatic interactions in model systems. Curr Opin Chem Biol 6:736–741

    Article  CAS  Google Scholar 

  20. Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed 42:1210–1250

    Article  CAS  Google Scholar 

  21. Yakovchuk P, Protozanova E, Frank-Kamenetskii MD (2006) Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res 34:564–574

    Article  CAS  Google Scholar 

  22. Marsili S, Chelli R, Schettino V, Procacci P (2008) Thermodynamics of stacking interactions in proteins. Phys Chem Chem Phys 10:2673–2685

    Article  CAS  Google Scholar 

  23. Norberg J (1998) Solvent influence on base stacking. Biophys J 74:394–402

    Article  CAS  Google Scholar 

  24. Tsuzuki S, Uchimaru T, Mikami M (2006) Intermolecular interaction between hexafluorobenzene and benzene: ab initio calculations including CCSD(T) level electron correlation correction. J Phys Chem A 110:2027–2033

    Article  CAS  Google Scholar 

  25. Arnstein SA, Sherrill C (2008) Substituent effects in parallel-displaced π–π interactions. Phys Chem Chem Phys 10:2646–2655

    Article  CAS  Google Scholar 

  26. Mackie ID, DiLabio GA (2008) Interactions in large, polyaromatic hydrocarbon dimers: application of density functional theory with dispersion corrections. J Phys Chem A 112:10968–10976

    Article  CAS  Google Scholar 

  27. Reha D, Kabelác M, Ryjácek F, Sponer J, Sponer JE, Elstner M, Suhai S, Hobza P (2002) Intercalators. 1. Nature of stacking interactions between intercalators (Ethidium, Daunomycin, Ellipticine, and 4′,6-diaminide-2-phenylindole) and DNA base pairs. Ab initio quantum chemical, density functional theory, and empirical potential study. J Am Chem Soc 124:3366–3376

    Article  CAS  Google Scholar 

  28. Kubar T, Hanus M, Ryjácek F, Hobza P (2006) Binding of cationic and neutral phenanthridine intercalators to a DNA oligomer is controlled by dispersion energy: quantum chemical calculations and molecular mechanics simulations. Chem Eur J 12:280–290

    Article  CAS  Google Scholar 

  29. Newcomb LF, Gellman SH (1994) Aromatic stacking interactions in aqueous solution: evidence that neither classical hydrophobic effects nor dispersion forces are important. J Am Chem Soc 116:4993–4994

    Article  CAS  Google Scholar 

  30. McKay SL, Haptonstall B, Gellman SH (2001) Beyond the hydrophobic effect: attractions involving heteroaromatic rings in aqueous solution. J Am Chem Soc 123:1244–1245

    Article  CAS  Google Scholar 

  31. Buisine E, de Villiers K, Egan TG, Biot C (2006) Solvent-induced effects: self-association of positively charged π systems. J Am Chem Soc 128:12122–12128

    Article  CAS  Google Scholar 

  32. Sponer J, Riley KE, Hobza P (2008) Nature and magnitude of aromatic stacking of nucleic acid bases. Phys Chem Chem Phys 10:2595–2610

    Article  CAS  Google Scholar 

  33. Pohorille A, Pratt LR, Burt SK, MacElroy RD (1984) Solution influence on biomolecular equilibria: nucleic acid base associations. J Biomol Struct Dyn 1:1257–1280

    Article  CAS  Google Scholar 

  34. Danilov VI, Tolokh IS (1984) Nature of the stacking of nucleic acid bases in water: a Monte Carlo simulation. J Biomol Struct Dyn 2:119–130

    Article  CAS  Google Scholar 

  35. Danilov VI, Shestopalova AV (1989) Hydrophobic effect in biological associates: a Monte Carlo simulation of caffeine molecules stacking. Int J Quantum Chem 35:103–112

    Article  CAS  Google Scholar 

  36. Danilov VI, Slyusarchuk ON, Poltev VI, Alderfer JL, Wollman RM, Brickmann JA, Lautenschlager P (1992) A Monte Carlo simulation of hydration of xanthine-derivatives and their stacked forms. J Biomol Struct Dyn 9:1239–1252

    Article  CAS  Google Scholar 

  37. Dailidonis VV, Danilov VI, Früchtl HA, van Mourik T (2011) The nature of base stacking: a Monte Carlo study. Theoret Chem Acc 130:859–870

    Article  CAS  Google Scholar 

  38. Dailidonis VV, Danilov VI, van Mourik T, Früchtl HA (2011) A study of nucleic acid base-stacking by the Monte Carlo method: extended cluster approach. Centr Eur J Chem 9:720–727

    Article  Google Scholar 

  39. Davies DB, Veselkov DA, Kodintsev VV, Evstigneev MP, Veselkov AN (2000) 1H NMR investigation of the hetero-association of aromatic molecules in aqueous solution: factors involved in the stabilization of complexes of daunomycin and acridine drugs. Mol Phys 98:1961–1971

    Article  CAS  Google Scholar 

  40. Evstigneev MP, Mukhina YuV, Davies DB (2006) 1H NMR study of the hetero-association of flavin-mononucleotide with mutagenic dyes: ethidium bromide and proflavine. Mol Phys 104:647–654

    Article  CAS  Google Scholar 

  41. Hernandez Santiago AA, Castilla SR, Rodriguez AM, Aleskerova E, Lantushenko A, Kostjukov V, Davies D, Evstigneev M (2010) Relation between structure and enthalpy for stacking interactions of aromatic molecules. Mol Phys 108:1941–1947

    Article  Google Scholar 

  42. Kostjukov VV, Mosunov AA, Ermolaev MA, Sykhonos PA, Evstigneev MP (2011) Additional stabilization of hetero-complexes of aromatic molecules: H-bonds or charge–transfer? J Mol Struct 985:403–406

    Article  CAS  Google Scholar 

  43. Andrejuk DD, Hernandez Santiago AA, Khomich VV, Voronov VK, Davies DB, Evstigneev MP (2008) Structural and thermodynamic analysis of the hetero-association of theophylline with aromatic drug molecules. J Mol Str 889:229–236

    Article  CAS  Google Scholar 

  44. Pimentel GC, McClellan AL (1960) The hydrogen bond. WH Freeman, San Francisco

    Google Scholar 

  45. Miller JH, Sobell HM (1967) Infrared demonstration of hydrogen bonding between purine and pyrimidine base analogues in solution. J Mol Biol 24:345–350

    Article  CAS  Google Scholar 

  46. Brovarets OO, Hovorun DM (2014) Can tautomerization of the A·T Watson–Crick base pair via double proton transfer provoke point mutations during DNA replication? A comprehensive QM and QTAIM analysis. J Biomol Struct Dyn 32:127–154

    Article  CAS  Google Scholar 

  47. Hartman KA, Lord RC, Thomas GJ Jr. (1973) Structural studies of nucleic acids and polynucleotides by infrared and Raman spectroscopy. In: Duchesne J (ed) Physico-Chemical Properties of Nucleic Acids. Academic, New York

    Google Scholar 

  48. Brovarets’ OO, Yurenko YP, Hovorun DM (2014) Intermolecular CH···O/N H-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study. J Biomol Struct Dyn 32:993–1022

    Article  Google Scholar 

  49. Brovarets OO, Yurenko YP, Hovorun DM (2015) The significant role of the intermolecular CH···O/N hydrogen bonds in governing the biologically important pairs of the DNA and RNA modified bases: a comprehensive theoretical investigation. J Biomol Struct Dyn 33:1624–1652

    Article  CAS  Google Scholar 

  50. Semenov MA, Blyzniuk IuN, Bolbukh TV, Shestopalova AV, Evstigneev MP, Maleev VY (2012) Intermolecular hydrogen bonds in hetero-complexes of biologically active aromatic molecules probed by the methods of vibrational spectroscopy. Spectrochim Acta Part A Mol Biomol Spectrosc 95:224–229

    Article  CAS  Google Scholar 

  51. Shestopalova AV (2006) Investigation of the association of caffeine and actinocin derivatives in aqueous solution: a molecular dynamics simulation. J Mol Liq 127:113–117

    Article  CAS  Google Scholar 

  52. Evstigneev MP, Shestopalova AV (2014) Structure, thermodynamics and energetics of drug-DNA interactions: computer modeling and experiment. In: Gorb L, Kuz’min V, Muratov E (eds) Application of computational techniques in pharmacy and medicine, Challenges and Advances in Computational Chemistry and Physics 17. Springer, Dordrecht

    Google Scholar 

  53. Kostjukov VV, Khomytova NM, Hernandez Santiago AA, Tavera AMC, Alvarado JS, Evstigneev MP (2011) Parsing of the free energy of aromatic–aromatic stacking interactions in solution. J Chem Thermodyn 43:1424–1434

    Article  CAS  Google Scholar 

  54. Semenov MA, Bereznyak EG (2000) Hydration and stability of nucleic acids in the condensed state. Comments Mol Cel Biophys 10:1–23

    CAS  Google Scholar 

  55. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon, Oxford

    Google Scholar 

  56. Biegler-Konig F, Schonbohm J, Bayles D (2001) AIM2000. J Comput Chem 22:545–559

    Article  Google Scholar 

  57. Popelier PLA (1998) Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A 102:1873–1878

    Article  CAS  Google Scholar 

  58. Koch U, Popelier PLA (1995) Characterization of C–H···O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  59. Shishkin OV, Palamarchuk GV, Gorb L, Leszczynsky J (2006) Intramolecular hydrogen bonds in canonical 2′-deoxyribonucleotides: an atoms in molecules study. J Phys Chem B 110:4413–4422

    Article  CAS  Google Scholar 

  60. Shishkin OV, Palamarchuk GV, Gorb L, Leszczynsky J (2008) Opposite charges assisted extra strong C–H···O hydrogen bond in protonated 2′-deoxyadenosine monophosphate. Chem Phys Lett 452:198–205

    Article  CAS  Google Scholar 

  61. Poltev VI, Grokhlina TI, González E (2004) The study of three-dimensional structure of caffeine associates using computational and experimental methods. J Mol Struct 709:123–128

    Article  CAS  Google Scholar 

  62. Maleev VY, Semenov MA, Kruglova EB, Bolbukh TV, Gasan AI, Bereznyak EG, Shestopalova AV (2003) Spectroscopic and calorimetric study of DNA interaction with a new series of actinocin derivatives. J Mol Struct 645:145–158

    Article  CAS  Google Scholar 

  63. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363. doi:10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  64. Neese F (2012) The ORCA program system. Comput Mol Sci 2(1):73–78. doi:10.1002/wcms.81

    Article  CAS  Google Scholar 

  65. Kostjukov VV, Khomutova NM, Hernandez Santiago AA, Licona Ibarra R, Davies DB, Evstigneev MP (2011) Calculation of the electrostatic charges and energies for intercalation of aromatic drug molecules with DNA. Int J Quantum Chem 111:711–721. doi:10.1002/qua.22451

    Article  CAS  Google Scholar 

  66. Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087

    Article  CAS  Google Scholar 

  67. Teplukhin AV, Malenkov GG, Poltev VI (1998) Monte Carlo simulation of DNA fragment hydration in the presence of alkaline cations using novel atom-atom potential functions. J Biomol Struct Dyn 16:289–300

    Article  CAS  Google Scholar 

  68. Poltev VI, Grokhlina TI (2002) A molecular mechanics approach to structure-activity relations in DNA-ligands. In: Veselkov AN, Davis DD (eds) Anti-cancer drug design: biological and biophysical aspects of synthetic phenoxazone derivatives. SEVNTU press, Sevastopol

    Google Scholar 

  69. Teplukhin AV, Zhurkin VB, Poltev VI (1996) Monte Carlo modeling of DNA hydration. Poly(A)-water interaction in the major groove stabilizes the B0 conformation. Mol Biol 30:75–84

    Google Scholar 

  70. Poltev VI, Malenkov GG, Gonzalez EJ, Teplukhin AV, Rein R, Shibata M, Miller JH (1996) Modeling DNA hydration: comparison of calculated and experimental hydration properties of nucleic acid bases. J Biomol Struct Dyn 13:717–726

    Article  CAS  Google Scholar 

  71. Malenkov G (2009) Liquid water and ices: understanding the structure and physical properties. J Phys Condens Matter 21:3101

    Article  Google Scholar 

  72. Abraham FF (1974) Monte Carlo simulation of physical clusters of water molecules. J Chem Phys 61:1221–1225

    Article  CAS  Google Scholar 

  73. Mruzik MR, Abraham FF, Schreiber DF, Pound GM (1976) A Monte Carlo study of ion–water clusters. J Chem Phys 64:481–491

    Article  CAS  Google Scholar 

  74. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer, Berlin

    Book  Google Scholar 

  75. Yang X-L, Wang AH-J (1999) Structural studies of atom-specific anticancer drugs acting on DNA. Pharm Ther 83:181–215

    Article  CAS  Google Scholar 

  76. Danilov VI, Anisimov VM, Kurita N (2005) MP2 and DFT studies of the DNA rare base pairs: the molecular mechanism of the spontaneous substitution mutations conditioned by tautomerism of bases. Chem Phys Lett 412:285–293

    Article  CAS  Google Scholar 

  77. Shishkin OV, Pelmenschikov A, Hovorun DM (2000) Molecular structure of free canonical 2′-deoxyribonucleosides: a density functional study. J Mol Struct 526:329–341

    Article  CAS  Google Scholar 

  78. Yurenko YP, Zhurakivsky RO, Samijlenko SP, Hovorun DM (2007) The whole of intramolecular H-bonding in the isolated DNA nucleoside thymidine. AIM electron density topological study. Chem Phys Lett 447:140–146

    Article  CAS  Google Scholar 

  79. Wendler K, Thar J, Zahn S (2010) Estimating the hydrogen bond energy. J Phys Chem A 114:9529–9536

    Article  CAS  Google Scholar 

  80. Yu H, van Gunsteren WF (2004) Charge-on-spring polarizable water models revisited: from water clusters to liquid water to ice. J Chem Phys 121:9549–9564

    Article  CAS  Google Scholar 

  81. Kostjukov VV, Khomytova NM, Davies DB, Evstigneev MP (2008) Electrostatic contribution to the energy of binding of aromatic ligands with DNA. Biopolymers 89:680–690

    Article  CAS  Google Scholar 

  82. Kostjukov VV, Khomytova NM, Evstigneev MP (2009) Partition of thermodynamic energies of drug-DNA complexation. Biopolymers 91:773–790

    Article  CAS  Google Scholar 

  83. Janin J (1997) Angstroms and calories. Structure 5:473–479

    Article  CAS  Google Scholar 

  84. Sharp KA, Nicholls A, Fine RF, Honig B (1991) Reconciling the magnitude of the microscopic and macroscopic hydrophobic effects. Science 252:106–109

    Article  CAS  Google Scholar 

  85. Baginski M, Fogolari F, Briggs JM (1997) Electrostatic and non-electrostatic contributions to the binding free energies of anthracycline antibiotics to DNA. J Mol Biol 274:253–267

    Article  CAS  Google Scholar 

  86. Kostjukov VV, Khomutova NM, Lantushenko AO, Evstigneev MP (2009) Hydrophobic contribution to the free energy of complexation of aromatic ligands with DNA. Biopolym Cell 25:133–141

    Article  Google Scholar 

  87. Shestopalova AV (2002) Hydration of nucleic acids components in dependence of nucleotide composition and relative humidity: a Monte Carlo simulation. Eur Phys J D 20:331–337

    Article  CAS  Google Scholar 

  88. Maleev V, Semenov M, Kashpur V, Bolbukh T, Shestopalova A, Anishchenko D (2002) Structure and hydration of polycytidylic acid from the data of infrared spectroscopy, EHF dielectrometry and computer modeling. J Mol Struct 605:51–61

    Article  CAS  Google Scholar 

  89. Zubatiuk T, Shishkin O, Gorb L, Hovorun D, Leszczynski J (2015) Structural waters in the minor and major grooves of DNA—a major factor governing structural adjustments of the A-T mini-helix. J Phys Chem B 119:381–391

    Article  CAS  Google Scholar 

  90. Maleev V Ya, Semenov MA, Kruglova EB, Bolbukh TV, Gasan AI, Bereznyak EG, Shestopalova AV (2003) Spectroscopic and calorimetric study of DNA interaction with a new series of actinocin derivatives. J Mol Struct 645:145–158

    Article  CAS  Google Scholar 

  91. Shestopalova AV (2007) The binding of actinocin derivatives with DNA fragments (Monte Carlo simulations) Biopolym. Cell 23:35–44

    CAS  Google Scholar 

  92. Evstigneev MP, Shestopalova AV (2014) Structure, Thermodynamics and energetic of drug-DNA interactions: computer modeling and experiments. In: Application of Computational Techniques in Pharmacy and Medicine, series: Challenges and advances in computational chemistry and physics. Springer, Dordrecht 17:21–58

Download references

Acknowledgments

The study was supported in part by the SCST Programme of Implementation and Usage of GRID technologies for 2009–2013 years. The calculations were done using clusters of Institute for Scintillation Materials NASU and Institute for Radiophysics and Electronics NASU. The research which results are presented in the paper was fulfilled due to the collaboration with Prof. O. Shishkin. The authors also thank Roman Zubatyuk (ISMA NASU) and Darina Pesina (IRE NASU) for their assistance in quantum-chemical calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Victorovna Shestopalova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 634 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blyzniuk, J.N., Semenov, M.A. & Shestopalova, A.V. Intermolecular hydrogen bonds in hetero-complexes of biologically active aromatic ligands: Monte Carlo simulations results. Struct Chem 27, 77–89 (2016). https://doi.org/10.1007/s11224-015-0696-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0696-3

Keywords

Navigation