Skip to main content
Log in

Value Functions and Transversality Conditions for Infinite-Horizon Optimal Control Problems

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

An Erratum to this article was published on 17 March 2010

Abstract

This paper investigates a relationship between the maximum principle with an infinite horizon and dynamic programming and sheds new light upon the role of the transversality condition at infinity as necessary and sufficient conditions for optimality with or without convexity assumptions. We first derive the nonsmooth maximum principle and the adjoint inclusion for the value function as necessary conditions for optimality. We then present sufficiency theorems that are consistent with the strengthened maximum principle, employing the adjoint inequalities for the Hamiltonian and the value function. Synthesizing these results, necessary and sufficient conditions for optimality are provided for the convex case. In particular, the role of the transversality conditions at infinity is clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis: A Hitchhiker’s Guide, 3rd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Araujo, A., Scheinkman, J.A.: Maximum principle and transversality condition for concave infinite horizon economic models. J. Econom. Theory 30, 1–16 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aseev, S.M., Kryazhimskiy, A.V.: The Pontryagin maximum principle and transversality conditions for a class of optimal control problems with infinite time horizons. SIAM J. Control Optim. 43, 1094–1119 (2004)

    Article  MATH  Google Scholar 

  4. Aseev, S.M., Kryazhimskiy, A.V.: The Pontryagin maximum principle and optimal economic growth problems. Proc. Steklov Inst. Math. 257, 1–255 (2007)

    Article  MATH  Google Scholar 

  5. Aubin, J.-P., Clarke, F.H.: Shadow prices and duality for a class of optimal control problems. SIAM J. Control Optim. 17, 567–586 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  6. Balder, E.J.: An existence result for optimal economic growth problems. J. Math. Anal. Appl. 95, 195–213 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  7. Barron, E.N., Jensen, R.: The Pontryagin maximum principle from dynamic programming and viscosity solutions to first-order partial differential equations. Trans. Amer. Math. Soc. 298, 635–641 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bates, G.R.: Lower closure existence theorems for optimal control problems with infinite horizon. J. Optim. Theory Appl. 24, 639–649 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  9. Baum, R.F.: Existence theorems for Lagrange control problems with unbounded time domain. J. Optim. Theory Appl. 19, 89–116 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  10. Becker, R.A., Boyd III, J.H.: Recursive utility and optimal capital accumulation. II. Sensitivity and duality theory. Econom. Theory 2, 547–563 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bell, M.L., Sargent, R.W.H., Vinter, R.B.: Existence of optimal controls for continuous time infinite horizon problems. Internat. J. Control 68, 887–896 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Benveniste, L.M., Scheinkman, J.A.: Duality theory for dynamic optimization models of economics: the continuous time case. J. Econom. Theory 27, 1–19 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cannarsa, P., Frankowska, H.: Some characterization of optimal trajectories in control theory. SIAM J. Control Optim. 29, 1322–1347 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cartigny, P., Michel, P.: On a sufficient transversality condition for infinite horizon optimal control problems. Automatica 39, 1007–1010 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cesari, L.: Optimization–Theory and Applications: Problems with Ordinary Differential Equations. Springer, Berlin (1983)

    MATH  Google Scholar 

  16. Clarke, F.H.: Generalized gradients and applications. Trans. Amer. Math. Soc. 205, 247–262 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  17. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York(1983)

    MATH  Google Scholar 

  18. Clarke, F.H., Vinter, R.B.: The relationship between the maximum principle and dynamic programming. SIAM J. Control Optim. 25, 1291–1311 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. Crandall, M.G., Evans, L.C., Lions, P.L.: Some properties of viscosity solutions of Hamilton–Jacobi equations. Trans. Amer. Math. Soc. 282, 487–502 (1984)

    Article  MathSciNet  Google Scholar 

  20. Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton–Jacobi equations. Trans. Amer. Math. Soc. 277, 1–42 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  21. Feinstein, C.D., Luenberger, D.G.: Analysis of the asymptotic behavior of optimal control trajectories: the implicit programming problem. SIAM J. Control Optim. 19, 561–585 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  22. Frankowska, H.: Optimal trajectories associated with a solution of the contingent Hamilton–Jacobi equation. Appl. Math. Optim. 19, 291–311 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  23. Frankowska, H.: Hamilton–Jacobi equations: Viscosity solutions and generalized gradients. J. Math. Anal. Appl. 141, 21–26 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  24. Goebel, R.: Duality and uniqueness of convex solutions to stationary Hamilton–Jacobi equation. Trans. Amer. Math. Soc. 357, 2187–2203 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Halkin, H.: Necessary conditions for optimal control problems with infinite horizon. Econometrica 42, 267–272 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kamihigashi, T.: Necessity of transversality conditions for infinite horizon problems. Econometrica 69, 995–1012 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mangasarian, O.L.: Sufficient conditions for the optimal control of nonlinear systems. SIAM J. Control Optim. 4, 139–151 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  28. Michel, P.: On the transversality condition in infinite horizon optimal problems. Econometrica 50, 975–984 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  29. Miricǎ, S.: A proof of Pontryagin’s minimum principle using dynamic programming. J. Math. Anal. Appl. 170, 501–512 (1992)

    Article  MathSciNet  Google Scholar 

  30. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory; II: Applications. Springer, Berlin (2006)

    Google Scholar 

  31. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mischenko, E.F.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962)

    MATH  Google Scholar 

  32. Rockafellar, R.T.: Conjugate convex functions in optimal control and the calculus of variations. J. Math. Anal. Appl. 32, 174–222 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  33. Rockafellar, R.T.: Optimal arcs and the minimum value function in problems of Lagrange. Trans. Amer. Math. Soc. 180, 53–83 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  34. Rockafellar, R.T.: Existence theorems for generalized control problems of Bolza and Lagrange. Adv. Math. 15, 312–333 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  35. Seierstadt, A., Sydsæter, K.: Sufficient conditions in optimal control theory. Internat. Econom. Rev. 18, 367–391 (1977)

    Article  MathSciNet  Google Scholar 

  36. Shell, K.: Applications of Pontryagin’s maximum principle to economics. In: Kuhn, H., Szegö, G.P. (eds.) Mathematical Systems Theory and Economics I, pp. 241–292. Springer, Berlin (1969)

    Google Scholar 

  37. Takekuma, S.-I.: Support price theorem for the continuous time model of capital accumulation. Econometrica 50, 427–442 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  38. Takekuma, S.-I.: On duality theory for the continuous time model of capital accumulation. Hitotsubashi J. Econom. 25, 145–154 (1984)

    Google Scholar 

  39. Vinter, R.B.: New results on the relationship between dynamic programming and the maximum principle. Math. Control Signals Systems 1, 97–105 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  40. Vinter, R.B.: Optimal Control. Birkhäuser, Boston (2000)

    MATH  Google Scholar 

  41. Ye, J.J.: Nonsmooth maximum principle for infinite-horizon problems. J. Optim. Theory Appl. 76, 485–500 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  42. Zeidan, V.: A modified Hamilton–Jacobi approach in the generalized problem of Bolza. Appl. Math. Optim. 11, 97–109 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  43. Zeidan, V.: First and second order sufficient conditions for optimal control and the calculus of variations. Appl. Math. Optim. 11, 209–226 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  44. Zhou, X.Y.: Maximum principle, dynamic programming, and their connection in deterministic control. J. Optim. Theory Appl. 65, 363–373 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  45. Zhou, X.Y.: Verification theorems within the framework of viscosity solutions. J. Math. Anal. Appl. 177, 208–225 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobusumi Sagara.

Additional information

This research is supported by a Grant-in-Aid for Scientific Research (No. 18610003) from the Ministry of Education, Culture, Sports, Science and Technology. I am grateful to an anonymous referee and the editor of this journal for helpful comments.

An erratum to this article can be found at http://dx.doi.org/10.1007/s11228-010-0135-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sagara, N. Value Functions and Transversality Conditions for Infinite-Horizon Optimal Control Problems. Set-Valued Anal 18, 1–28 (2010). https://doi.org/10.1007/s11228-009-0132-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-009-0132-1

Keywords

Mathematics Subject Classifications (2000)

Navigation