Skip to main content
Log in

Inexact Proximal Point Methods in Metric Spaces

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

We study the local convergence of a proximal point method in a metric space under the presence of computational errors. We show that the proximal point method generates a good approximate solution if the sequence of computational errors is bounded from above by some constant. The principle assumption is a local error bound condition which relates the growth of an objective function to the distance to the set of minimizers introduced by Hager and Zhang (SIAM J Control Optim 46:1683–1704, 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez, F., Lopez, J., Ramirez, C.H.: Interior proximal algorithm with variable metric for second-order cone programming: applications to structural optimization and support vector machines. Optim. Methods Softw. 25, 859–881 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aragon-Artacho, F.J., Geoffroy, M.H.: Uniformity and inexact version of a proximal method for metrically regular mappings. J. Math. Anal. Appl. 335, 168–183 (2007)

    Article  MathSciNet  Google Scholar 

  3. Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. Ser. B 116, 5–16 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Lojasiewicz inequality. Math. Oper. Res. 35, 438–457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Bregman monotone optimization algorithms. SIAM J. Control Optim. 42, 596–636 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bauschke, H.H., Goebel, R., Lucet, Y., Wang, X.: The proximal average: basic theory. SIAM J. Optim. 19, 766–785 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bregman, L.M.: A relaxation method of finding a common point of convex sets and its application to the solution of problems in convex programming. Z. Vycisl. Mat. Mat. Fiz. 7, 620–631 (1967)

    MathSciNet  MATH  Google Scholar 

  8. Burachik, R.S., Lopes, J.O., Da Silva, G.J.P.: An inexact interior point proximal method for the variational inequality problem. Comput. Appl. Math. 28, 15–36 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Butnariu, D., Kassay, G.: A proximal-projection method for finding zeros of set-valued operators. SIAM J. Control Optim. 47, 2096–2136 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ceng, L.C., Mordukhovich, B.S., Yao, J.C.: Hybrid approximate proximal method with auxiliary variational inequality for vector optimization. J. Optim. Theory Appl. 146, 267–303 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, Z., Zhao, K.: A proximal-type method for convex vector optimization problem in Banach spaces. Numer. Funct. Anal. Optim. 30, 70–81 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chuong, T.D., Mordukhovich, B.S., Yao, J.C.: Hybrid approximate proximal algorithms for efficient solutions in for vector optimization. J. Nonlinear Convex Anal.

  13. Hager, W.W., Zhang, H.: Asymptotic convergence analysis of a new class of proximal point methods. SIAM J. Control Optim. 46, 1683–1704 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hager, W.W., Zhang, H.: Self-adaptive inexact proximal point methods. Comput. Optim. Appl. 39, 161–181 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hare, W., Sagastizabal, C.: A redistributed proximal bundle method for nonconvex optimization. SIAM J. Optim. 20, 2442–2473 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ioffe, A.D., Zaslavski, A.J.: Variational principles and well-posedness in optimization and calculus of variations. SIAM J. Control and Optim. 38, 566–581 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Iusem, A., Nasri, M.: Inexact proximal point methods for equilibrium problems in Banach spaces. Numer. Funct. Anal. Optim. 28, 1279–1308 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Iusem, A., Resmerita, E.: A proximal point method in nonreflexive Banach spaces. Set-Valued Var. Anal. 18, 109–120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kaplan, A., Tichatschke, R.: Stable Methods for Ill-Posed Variational Problems. Akademie, Berlin (1994)

    MATH  Google Scholar 

  20. Kaplan, A., Tichatschke, R.: Proximal point methods and nonconvex optimization. J. Glob. Optim. 13, 389–406 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kassay, G.: The proximal points algorithm for reflexive Banach spaces. Stud. Univ. Babes-Bolyai, Math. 30, 9–17 (1985)

    MathSciNet  MATH  Google Scholar 

  22. Kiwiel, K.C.: Restricted step and Levenberg-Marquardt techniques in proximal bundle methods for nonconvex nondifferentiable optimization. SIAM J. Optim. 6, 227–249 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lemaire, B.: The proximal algorithm. In: Penot, J.P. (ed.) International Series of Numerical Mathematics, vol. 87, pp. 73–87. Birkhauser, Basel (1989)

    Google Scholar 

  24. Lotito, P.A., Parente, L.A., Solodov, M.V.: A class of variable metric decomposition methods for monotone variational inclusions. J. Convex Anal. 16, 857–880 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Martinet, B.: Pertubation des methodes d’optimisation: application. RAIRO Anal. Numer. 12, 53–171 (1978)

    MathSciNet  Google Scholar 

  26. Moreau, J.J.: Proximite et dualite dans un espace Hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)

    MathSciNet  MATH  Google Scholar 

  27. Peypouquet, J., Sorin, S.: Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time. J. Convex Anal. 17, 1113–1163 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Reich, S., Sabach, S.: Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces. Nonlinear Anal. 73, 122–135 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1, 97–116 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yamashita, N., Kanzow, C., Morimoto, T., Fukushima, M.: An infeasible interior proximal method for convex programming problems with linear constraints. J. Nonlinear Convex Anal. 2, 139–156 (2001)

    MathSciNet  MATH  Google Scholar 

  32. Zaslavski, A.J.: Generic well-posedness of optimal control problems without convexity assumptions. SIAM J. Control Optim. 39, 250–280 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zaslavski, A.J.: Well-posedness and porosity in optimal control without convexity assumptions. Calc. Var. Partial Differ. Equ. 13, 265–293 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zaslavski, A.J.: Convergence of a proximal point method in the presence of computational errors in Hilbert spaces. SIAM J. Optim. 20, 2413–2421 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zaslavski, A.J.: Convergence of a proximal-like algorithm in the presence of computational errors. Taiwan. J. Math. 14, 2307–2328 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Zaslavski, A.J.: The projected subgradient method for nonsmooth convex optimization in the presence of computational errors. Numer. Funct. Anal. Optim. 31, 616–633 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zaslavski, A.J.: Maximal monotone operators and the proximal point algorithm in the presence of computational errors. J. Optim. Theory Appl. 150, 20–32 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander J. Zaslavski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaslavski, A.J. Inexact Proximal Point Methods in Metric Spaces. Set-Valued Anal 19, 589–608 (2011). https://doi.org/10.1007/s11228-011-0185-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-011-0185-9

Keywords

Mathematics Subject Classifications (2010)

Navigation