Skip to main content
Log in

Energy splitting in dynamical tunneling

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose an operator method for calculating the semiclassical asymptotic form of the energy splitting value in the general case of tunneling between symmetric orbits in the phase space. We use this approach in the case of a particle on a circle to obtain the asymptotic form of the energy tunneling splitting related to the over-barrier reflection from the potential. As an example, we consider the quantum pendulum in the rotor regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Razavy, Quantum Theory of Tunneling, World Scientific, Singapore (2003).

    Book  MATH  Google Scholar 

  2. J. Ankerhold, Quantum Tunneling in Complex Systems: The Semiclassical Approach (Springer Tracts Mod. Phys., Vol. 224), Springer, Berlin (2007).

    Google Scholar 

  3. F. Hund, Z. Phys., 40, 742–764 (1927).

    Article  ADS  MathSciNet  Google Scholar 

  4. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics [in Russian], Vol. 3, Quantum Mechanics: Non-Relativistic Theory, Nauka, Moscow (1974); English transl. prev. ed., Pergamon, London (1958).

    Google Scholar 

  5. E. M. Harrell, Commun. Math. Phys., 75, 239–261 (1980).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. S. Yu. Dobrokhotov, V. N. Kolokoltsov, and V. P. Maslov, Theor. Math. Phys., 87, 561–599 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Brüning, S. Yu. Dobrokhotov, and E. S. Semenov, Regul. Chaotic Dyn., 11, 167–180 (2006).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. E. V. Vybornyi, Theor. Math. Phys., 178, 93–114 (2014).

    Article  MATH  Google Scholar 

  9. B. Helffer and J. Sjöstrand, Commun. Partial Differ. Equ., 9, 337–408 (1984).

    Article  MATH  Google Scholar 

  10. B. Helffer and J. Sjöstrand, Ann. Inst. H. Poincaré Phys. Théor., 42, 127–212 (1985).

    MATH  Google Scholar 

  11. B. Helffer and J. Sjöstrand, Math. Nachr., 124, 263–313 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  12. R. L. Jaffe, Amer. J. Phys., 78, 620–623 (2010).

    Article  ADS  Google Scholar 

  13. N. T. Maitra and E. J. Heller, Phys. Rev. A, 54, 4763–4769 (1996).

    Article  ADS  Google Scholar 

  14. M. J. Davis and E. J. Heller, J. Chem. Phys., 75, 246–254 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  15. W. K. Hensinger, H. Häffner, A. Browaeys, N. R. Heckenberg, K. Helmerson, C. McKenzie, G. J. Milburn, W. D. Phillips, S. L. Rolston, H. Rubinsztein-Dunlop, and B. Upcroft, Nature, 412, 52–55 (2001).

    Article  ADS  Google Scholar 

  16. J. Le Deunff and A. Mouchet, Phys. Rev. E, 81, 046205 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  17. J. Brüning, S. Yu. Dobrokhotov, and K. V. Pankrashkin, Russ. J. Math. Phys., 9, 14–49 (2002).

    MATH  MathSciNet  Google Scholar 

  18. J. Brüning, S. Yu. Dobrokhotov, and R. V. Nekrasov, Theor. Math. Phys., 175, 620–636 (2013).

    Article  MATH  Google Scholar 

  19. S. Yu. Dobrokhotov and A. Yu. Anikin, “Tunneling, librations, and normal forms in a quantum double well with a magnetic field,” in: Nonlinear Physical Systems: Spectral Analysis, Stability, and Bifurcations (O. N. Kirillov and D. E. Pelinovsky, eds.), Wiley, New York (2014), pp. 85–110.

    Chapter  Google Scholar 

  20. A. Fedotov and F. Klopp, Ann. Sci. École Norm. Sup. (4), 38, 889–950 (2005); arXiv:math-ph/0502039v1 (2005).

    MATH  MathSciNet  Google Scholar 

  21. A. Fedotov and F. Klopp, Mém. Soc. Math. Fr., n.s., 104, 1–108 (2006); arXiv:math-ph/0408006v1 (2004).

    Google Scholar 

  22. M. S. P. Eastham, The Spectral Theory of Periodic Differential Equations, Scottish Academic, Edinburgh (1973).

    MATH  Google Scholar 

  23. W. Magnus and S. Winkler, Hill’s Equation (Intersci. Tracts Pure Appl. Math., Vol. 20), Wiley, New York (1966).

    MATH  Google Scholar 

  24. E. U. Condon, Phys. Rev., 31, 891–894 (1928).

    Article  ADS  MATH  Google Scholar 

  25. A. M. Dykhne, Soviet Phys. JETP, 13, 999–1001 (1961).

    Google Scholar 

  26. S. G. Simonyan, Differential Equations, 6, 965–971 (1970).

    Google Scholar 

  27. M. V. Fedoryuk, Asymptotic Methods for Linear Ordinary Differential Equations [in Russian], Nauka, Moscow (1983); English transl.: Asymptotic Analysis: Linear Ordinary Differential Equations, Springer, Berlin (1993).

    MATH  Google Scholar 

  28. S. Yu. Dobrokhotov and A. I. Shafarevich, Math. Phys. Anal. Geom., 2, 141–177 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  29. M. E. Harrell, Amer. J. Math. Suppl., 139–150 (1981).

    Google Scholar 

  30. J. Avron and B. Simon, Ann. Phys., 134, 76–84 (1981).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. J. Pöschel, Math. Ann., 349, 433–458 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  32. E. Trubowitz, Commun. Pure Appl. Math., 30, 321–337 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  33. H. Hochstadt, Proc. Amer. Math. Soc., 14, 930–932 (1963).

    MATH  MathSciNet  Google Scholar 

  34. C. Herring, Rev. Modern Phys., 34, 631–645 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  35. E. M. Lifshitz and L. P. Pitaevsky, Course of Theoretical Physics [in Russian], Vol. 9, Statistical Physics: Part 2. Condensed State Theory, Nauka, Moscow (1978); English transl., Pergamon, London (1980).

    Google Scholar 

  36. V. P. Maslov, Operator Methods [in Russian], Nauka, Moscow (1973); English transl.: Operational Methods, Mir, Moscow (1976).

    Google Scholar 

  37. M. V. Fedoryuk, The Saddle-Point Method [in Russian], Nauka, Moscow (1977).

    MATH  Google Scholar 

  38. V. L. Pokrovskii, S. K. Savvinykh, and F. R. Ulinich, Soviet Phys. JETP, 7, 879–882 (1958).

    Google Scholar 

  39. V. L. Pokrovskii, S. K. Savvinykh, and F. R. Ulinich, Soviet Phys. JETP, 7, 1119–1120 (1958).

    Google Scholar 

  40. V. L. Pokrovskii and I. M. Khalatnikov, Soviet Phys. JETP, 13, 1207–1210 (1961).

    Google Scholar 

  41. M. Leibscher and B. Schmidt, Phys. Rev. A, 80, 012510 (2009).

    Article  ADS  Google Scholar 

  42. M. Ayub, K. Naseer, M. Ali, and F. Saif, J. Russ. Laser Res., 30, 205–223 (2009).

    Article  Google Scholar 

  43. P. A. Braun, Theor. Math. Phys., 37, 1070–1081 (1978).

    Article  Google Scholar 

  44. A. B. Vasil’eva, “The correspondence between certain properties of the solutions of linear difference systems and systems of ordinary linear differential equations [in Russian],” in: Trudy Sem. Teor. Differentsial. Uravnenii s Otklon. Argumentom, Vol. 5, Izdat. UDN, Moscow (1967), pp. 21–44.

    MathSciNet  Google Scholar 

  45. J. S. Geronimo and D. T. Smith, J. Approx. Theory, 69, 269–301 (1992).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Vybornyi.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 181, No. 2, pp. 337–348, November, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vybornyi, E.V. Energy splitting in dynamical tunneling. Theor Math Phys 181, 1418–1427 (2014). https://doi.org/10.1007/s11232-014-0222-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-014-0222-6

Keywords

Navigation