Skip to main content
Erschienen in: Telecommunication Systems 2/2018

25.05.2017

A queueing model of an energy harvesting sensor node with data buffering

verfasst von: Eline De Cuypere, Koen De Turck, Dieter Fiems

Erschienen in: Telecommunication Systems | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Battery lifetime is a key impediment to long-lasting low power sensor nodes and networks thereof. Energy harvesting—conversion of ambient energy into electrical energy—has emerged as a viable alternative to battery power. Indeed, the harvested energy mitigates the dependency on battery power and can be used to transmit data. However, unfair data delivery delay and energy expenditure among sensors remain important issues for such networks. We study performance of sensor networks with mobile sinks: a mobile sink moves towards the transmission range of the different static sensor nodes to collect their data. We propose and analyse a Markovian queueing system to study the impact of uncertainty in energy harvesting, energy expenditure, data acquisition and data transmission. In particular, the energy harvesting sensor node is described by a system with two queues, one queue corresponding to the battery and the other to the data buffer. We illustrate our approach by numerical examples which show that energy harvesting correlation considerably affects performance measures like the mean data delay and the effective data collection rate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.CrossRef Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.CrossRef
2.
Zurück zum Zitat Akyildiz, I. F., & Vuran, M. C. (2010). Wireless sensor networks. New York: Wiley.CrossRef Akyildiz, I. F., & Vuran, M. C. (2010). Wireless sensor networks. New York: Wiley.CrossRef
3.
Zurück zum Zitat Tan, Y. K., & Panda, S. K. (2010). Review of energy harvesting technologies for sustainable wireless sensor network. In W. Seah & Y. K. Tan (Eds.), Sustainable wireless sensor network (Chap. 2). INTECH. Tan, Y. K., & Panda, S. K. (2010). Review of energy harvesting technologies for sustainable wireless sensor network. In W. Seah & Y. K. Tan (Eds.), Sustainable wireless sensor network (Chap. 2). INTECH.
4.
Zurück zum Zitat Alemdar, H., & Ersoy, C. (2010). Wireless sensor networks for healthcare: A survey. Computer Networks, 54(15), 2688–2710.CrossRef Alemdar, H., & Ersoy, C. (2010). Wireless sensor networks for healthcare: A survey. Computer Networks, 54(15), 2688–2710.CrossRef
5.
Zurück zum Zitat Sahu, A., Fernandez, E. B., Cardei, M., & Vanhilst, M. (2010). A pattern for a sensor node. In Proceedings of the 17th conference on pattern languages of programs. Sahu, A., Fernandez, E. B., Cardei, M., & Vanhilst, M. (2010). A pattern for a sensor node. In Proceedings of the 17th conference on pattern languages of programs.
6.
Zurück zum Zitat Sudevalayam, S., & Kulkarni, P. (2011). Energy harvesting sensor nodes: Survey and implications. IEEE Communications Surveys and Tutorials, 13, 443–461.CrossRef Sudevalayam, S., & Kulkarni, P. (2011). Energy harvesting sensor nodes: Survey and implications. IEEE Communications Surveys and Tutorials, 13, 443–461.CrossRef
7.
Zurück zum Zitat Anastasi, G., Conti, M., Di Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7, 537–568.CrossRef Anastasi, G., Conti, M., Di Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7, 537–568.CrossRef
8.
Zurück zum Zitat Paradiso, J. A., & Starner, T. (2005). Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 4, 18–27.CrossRef Paradiso, J. A., & Starner, T. (2005). Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 4, 18–27.CrossRef
9.
Zurück zum Zitat Gunduz, D., Stamatiou, K., Michelusi, N., & Zorzi, M. (2014). Designing intelligent energy harvesting communication systems. IEEE Communications Magazine, 52(1), 210–216.CrossRef Gunduz, D., Stamatiou, K., Michelusi, N., & Zorzi, M. (2014). Designing intelligent energy harvesting communication systems. IEEE Communications Magazine, 52(1), 210–216.CrossRef
10.
Zurück zum Zitat Lu, X., Wang, P., Niyato, D., Kim, D. I., & Han, Z. (2015). Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Surveys and Tutorials, 17(2), 757–789.CrossRef Lu, X., Wang, P., Niyato, D., Kim, D. I., & Han, Z. (2015). Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Surveys and Tutorials, 17(2), 757–789.CrossRef
11.
Zurück zum Zitat Yang, C., & Chin, K. (2017). On nodes placement in energy harvesting wireless sensor networks for coverage and connectivity. IEEE Transactions on Industrial Informatics, 13(1), 27–36.CrossRef Yang, C., & Chin, K. (2017). On nodes placement in energy harvesting wireless sensor networks for coverage and connectivity. IEEE Transactions on Industrial Informatics, 13(1), 27–36.CrossRef
12.
Zurück zum Zitat Yang, F., Du, L., Chen, W. G., Li, J., Wang, Y. Y., & Wang, D. S. (2017). Hybrid energy harvesting for condition monitoring sensors in power grids. Energy, 118, 435–445.CrossRef Yang, F., Du, L., Chen, W. G., Li, J., Wang, Y. Y., & Wang, D. S. (2017). Hybrid energy harvesting for condition monitoring sensors in power grids. Energy, 118, 435–445.CrossRef
13.
Zurück zum Zitat Bi, Y., Niu, J., Sun, L., Huangfu, W., & Sun, Y. (2007). Moving schemes for mobile sinks in wireless sensor networks. In IEEE international performance computing, and communications conference, (pp. 101–108). Bi, Y., Niu, J., Sun, L., Huangfu, W., & Sun, Y. (2007). Moving schemes for mobile sinks in wireless sensor networks. In IEEE international performance computing, and communications conference, (pp. 101–108).
14.
Zurück zum Zitat Di Francesco, M., Das, S. K., & Anastasi, G. (2011). Data collection in wireless sensor networks with mobile elements: A survey. ACM Transactions on Sensor Networks, 8(1), 1–31.CrossRef Di Francesco, M., Das, S. K., & Anastasi, G. (2011). Data collection in wireless sensor networks with mobile elements: A survey. ACM Transactions on Sensor Networks, 8(1), 1–31.CrossRef
15.
Zurück zum Zitat Gao, S., Zhang, H., & Das, S. K. (2011). Efficient data collection in wireless sensor networks with path-constrained mobile sinks. IEEE Transactions on Mobile Computing, 10(4), 592–608.CrossRef Gao, S., Zhang, H., & Das, S. K. (2011). Efficient data collection in wireless sensor networks with path-constrained mobile sinks. IEEE Transactions on Mobile Computing, 10(4), 592–608.CrossRef
16.
Zurück zum Zitat Turgut, D., & Bölöni, L. (2009). Heuristic approaches for transmission scheduling in sensor networks with multiple mobile sinks. The Computer Journal, 54(3), 332–344.CrossRef Turgut, D., & Bölöni, L. (2009). Heuristic approaches for transmission scheduling in sensor networks with multiple mobile sinks. The Computer Journal, 54(3), 332–344.CrossRef
17.
Zurück zum Zitat Yun, Y., & Xia, Y. (2010). Maximizing the lifetime of wireless sensor networks with mobile sink in delay-tolerant applications. IEEE Transactions on Mobile Computing, 9, 1308–1318.CrossRef Yun, Y., & Xia, Y. (2010). Maximizing the lifetime of wireless sensor networks with mobile sink in delay-tolerant applications. IEEE Transactions on Mobile Computing, 9, 1308–1318.CrossRef
18.
Zurück zum Zitat Liang, W., Luo, J., & Xu, X. (2010). Prolonging network lifetime via a controlled mobile sink in wireless sensor networks. In Proceedings of the IEEE global communications conference (GLOBECOM), Miami, Florida. Liang, W., Luo, J., & Xu, X. (2010). Prolonging network lifetime via a controlled mobile sink in wireless sensor networks. In Proceedings of the IEEE global communications conference (GLOBECOM), Miami, Florida.
19.
Zurück zum Zitat Liang, W., & Luo, J. (2011). Network lifetime maximization in sensor networks with multiple mobile sinks. In Proceedings of the IEEE conference on local computer networks (LCN), Bonn, Germany. Liang, W., & Luo, J. (2011). Network lifetime maximization in sensor networks with multiple mobile sinks. In Proceedings of the IEEE conference on local computer networks (LCN), Bonn, Germany.
20.
Zurück zum Zitat Kaswan, A., Nitesh, K., & Prasanta, J. K. (2017). Energy efficient path selection for mobile sink and data gathering in wireless sensor networks. AEU-International Journal of Electronics and Communications, 73, 110–118.CrossRef Kaswan, A., Nitesh, K., & Prasanta, J. K. (2017). Energy efficient path selection for mobile sink and data gathering in wireless sensor networks. AEU-International Journal of Electronics and Communications, 73, 110–118.CrossRef
21.
Zurück zum Zitat Wang, C., Guo, S., & Yang, T. (2016). An optimization framework for mobile data collection in energy-harvesting wireless sensor networks. IEEE Transactions on Mobile Computing, 15(12), 2969–2986.CrossRef Wang, C., Guo, S., & Yang, T. (2016). An optimization framework for mobile data collection in energy-harvesting wireless sensor networks. IEEE Transactions on Mobile Computing, 15(12), 2969–2986.CrossRef
22.
Zurück zum Zitat Khan, T. H. F., & Kumar, D. S. (2016). Mobile collector aided energy reduced (MCER) data collection in agricultural wireless sensor networks. In Proceedings of the 6th IEEE international conference on advanced computing, (pp. 629–633). Khan, T. H. F., & Kumar, D. S. (2016). Mobile collector aided energy reduced (MCER) data collection in agricultural wireless sensor networks. In Proceedings of the 6th IEEE international conference on advanced computing, (pp. 629–633).
23.
Zurück zum Zitat Truong, T. T., Brown, K. N., & Sreenan, C. J. (2010). Using mobile sinks in wireless sensor networks to improve building emergency response. In Proceedings of the royal Irish academy research. Colloquium on wireless as an enabling technology. Truong, T. T., Brown, K. N., & Sreenan, C. J. (2010). Using mobile sinks in wireless sensor networks to improve building emergency response. In Proceedings of the royal Irish academy research. Colloquium on wireless as an enabling technology.
24.
Zurück zum Zitat Kim, C., Cho, H., Kim, S., Yang, T., & Kim, S. H. (2016). Sink mobility support scheme for continuous object tracking in wireless sensor networks. In 30th IEEE international conference on advanced information networking and applications, (pp. 452–457). Kim, C., Cho, H., Kim, S., Yang, T., & Kim, S. H. (2016). Sink mobility support scheme for continuous object tracking in wireless sensor networks. In 30th IEEE international conference on advanced information networking and applications, (pp. 452–457).
25.
Zurück zum Zitat Sharma, V., Mukherji, U., & Joseph, V. (2010). Optimal energy management policies for energy harvesting sensor nodes. IEEE Transactions on Wireless Communications, 6, 1326–1336.CrossRef Sharma, V., Mukherji, U., & Joseph, V. (2010). Optimal energy management policies for energy harvesting sensor nodes. IEEE Transactions on Wireless Communications, 6, 1326–1336.CrossRef
26.
Zurück zum Zitat Yang, J., & Ulukus, S. (2012). Optimal packet scheduling in an energy harvesting communication system. IEEE Transactions on Communications, 60(1), 220–230.CrossRef Yang, J., & Ulukus, S. (2012). Optimal packet scheduling in an energy harvesting communication system. IEEE Transactions on Communications, 60(1), 220–230.CrossRef
27.
Zurück zum Zitat Tutuncuoglu, K., & Yener, A. (2012). Optimum transmission policies for battery limited energy harvesting nodes. IEEE Transactions on Wireless Communications, 11, 1180–1189.CrossRef Tutuncuoglu, K., & Yener, A. (2012). Optimum transmission policies for battery limited energy harvesting nodes. IEEE Transactions on Wireless Communications, 11, 1180–1189.CrossRef
28.
Zurück zum Zitat Ozel, O., & Ulukus, S. (2010). Information-theoretic analysis of an energy harvesting communication system. In Proceedings of the 21st IEEE international symposium on personal, indoor and mobile radio communications, (pp. 330–335). Istanbul, Turkey, 26–30 Sept. 2010. Ozel, O., & Ulukus, S. (2010). Information-theoretic analysis of an energy harvesting communication system. In Proceedings of the 21st IEEE international symposium on personal, indoor and mobile radio communications, (pp. 330–335). Istanbul, Turkey, 26–30 Sept. 2010.
29.
Zurück zum Zitat Rajesh, R., Sharma, V., & Viswanath, P.(2011). Information capacity of Energy harvesting. In Proceedings of the 2011 IEEE international symposium on information theory, (pp. 2363–2367). St. Petersburg, Russia, 31 July-5 Aug. 2011. Rajesh, R., Sharma, V., & Viswanath, P.(2011). Information capacity of Energy harvesting. In Proceedings of the 2011 IEEE international symposium on information theory, (pp. 2363–2367). St. Petersburg, Russia, 31 July-5 Aug. 2011.
30.
Zurück zum Zitat Zhang, S., & Seyedi, A. (2011). Analysis and design of energy harvesting wireless sensor networks with linear topology. In Proceedings of the IEEE international conference on communications (ICC), Kyoto, Japan, 5–9 June 2011. Zhang, S., & Seyedi, A. (2011). Analysis and design of energy harvesting wireless sensor networks with linear topology. In Proceedings of the IEEE international conference on communications (ICC), Kyoto, Japan, 5–9 June 2011.
31.
Zurück zum Zitat Meshkati, F., Poor, H. V., & Schwartz, S. C. (2007). Energy-efficient resource allocation in wireless networks. IEEE Signal Processing Magazine, 24, 58–68.CrossRef Meshkati, F., Poor, H. V., & Schwartz, S. C. (2007). Energy-efficient resource allocation in wireless networks. IEEE Signal Processing Magazine, 24, 58–68.CrossRef
32.
Zurück zum Zitat Tsuo, F. Y., Tan, H. P., Chew, Y. H., & Wei, H. Y. (2011). Energy-aware transmission control for wireless sensor networks powered by ambient energy harvesting: A game-theoretic approach. In Proceedings of the IEEE international conference on communications (ICC), Kyoto, Japan, 5–9 June 2011. Tsuo, F. Y., Tan, H. P., Chew, Y. H., & Wei, H. Y. (2011). Energy-aware transmission control for wireless sensor networks powered by ambient energy harvesting: A game-theoretic approach. In Proceedings of the IEEE international conference on communications (ICC), Kyoto, Japan, 5–9 June 2011.
33.
Zurück zum Zitat Altman, E., Fiems, D., Haddad, M., & Gaillard, J. (2012). Semi-dynamic hawk and dove game applied to power control. In Proceedings of the 31st annual IEEE international conference on computer communications (INFOCOM). Altman, E., Fiems, D., Haddad, M., & Gaillard, J. (2012). Semi-dynamic hawk and dove game applied to power control. In Proceedings of the 31st annual IEEE international conference on computer communications (INFOCOM).
34.
Zurück zum Zitat Haddad, M., Altman, E., Gaillard, J., & Fiems, D. (2012). A semi-dynamic evolutionary power control game. In Proceedings of networking 2012, lecture notes in computer science vol. 7290, (pp. 392–403). Haddad, M., Altman, E., Gaillard, J., & Fiems, D. (2012). A semi-dynamic evolutionary power control game. In Proceedings of networking 2012, lecture notes in computer science vol. 7290, (pp. 392–403).
35.
Zurück zum Zitat Niyato, D., Rashid, M. M., & Bhargave, V. K. (2007). Wireless sensor networks with energy harvesting technologies: A game-theoretic approach to optimal energy management. IEEE Wireless Communications, 14, 90–96.CrossRef Niyato, D., Rashid, M. M., & Bhargave, V. K. (2007). Wireless sensor networks with energy harvesting technologies: A game-theoretic approach to optimal energy management. IEEE Wireless Communications, 14, 90–96.CrossRef
36.
Zurück zum Zitat Jornet, J. S., & Akyildiz, I. F. (2012). Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the terahertz band. IEEE Transactions on Nanotechnology, 11, 570–580.CrossRef Jornet, J. S., & Akyildiz, I. F. (2012). Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the terahertz band. IEEE Transactions on Nanotechnology, 11, 570–580.CrossRef
37.
Zurück zum Zitat Seyedi, A., & Sikdar, B. (2010). Performance modelling of transmission schedulers capable of energy harvesting. In Proceedings of the IEEE international conference on communications (ICC), Cape Town. Seyedi, A., & Sikdar, B. (2010). Performance modelling of transmission schedulers capable of energy harvesting. In Proceedings of the IEEE international conference on communications (ICC), Cape Town.
38.
Zurück zum Zitat Seyedi, A., & Sikdar, B. (2010). Energy efficient transmission strategies for body sensor networks with energy harvesting. IEEE Transactions on Communications, 58(7), 2116–2126.CrossRef Seyedi, A., & Sikdar, B. (2010). Energy efficient transmission strategies for body sensor networks with energy harvesting. IEEE Transactions on Communications, 58(7), 2116–2126.CrossRef
39.
Zurück zum Zitat Ventura, J., & Chowdhury, K. (2011). Markov modelling of energy harvesting body sensor networks. In Proceedings of PIMRC, (pp. 2168–2172). Toronto. Ventura, J., & Chowdhury, K. (2011). Markov modelling of energy harvesting body sensor networks. In Proceedings of PIMRC, (pp. 2168–2172). Toronto.
40.
Zurück zum Zitat Ho, C. K., Khoa, P. D., & Ming, P. C. (2010). Markovian models for harvested energy in wireless communications. In Proceedings of the 10th international conference on computational science, Amsterdam (ICCS). Ho, C. K., Khoa, P. D., & Ming, P. C. (2010). Markovian models for harvested energy in wireless communications. In Proceedings of the 10th international conference on computational science, Amsterdam (ICCS).
41.
Zurück zum Zitat Lee, P., Eu, Z. A., Han, M., & Tan, H. (2011). Empirical modeling of a solar powered energy harvesting wireless sensor node for time-slotted operation. In Porceedings of the IEEE wireless communications and networking conference (WCNC), (pp. 179–184). Cancun. Lee, P., Eu, Z. A., Han, M., & Tan, H. (2011). Empirical modeling of a solar powered energy harvesting wireless sensor node for time-slotted operation. In Porceedings of the IEEE wireless communications and networking conference (WCNC), (pp. 179–184). Cancun.
42.
Zurück zum Zitat Michelusi, N., Stamatiou, K., & Zorzi, M. (2013). Transmission policies for energy harvesting sensors with time-correlated energy supply. IEEE Transactions on Communications, 61(7), 2988–3001.CrossRef Michelusi, N., Stamatiou, K., & Zorzi, M. (2013). Transmission policies for energy harvesting sensors with time-correlated energy supply. IEEE Transactions on Communications, 61(7), 2988–3001.CrossRef
43.
Zurück zum Zitat Michelusi, N., Badia, L., Carli, R., Corradini, L., & Zorzi, M. (2013). Energy management policies for harvesting-based wireless sensor devices with battery degradation. IEEE Transactions on Communications, 61(12), 4934–4947.CrossRef Michelusi, N., Badia, L., Carli, R., Corradini, L., & Zorzi, M. (2013). Energy management policies for harvesting-based wireless sensor devices with battery degradation. IEEE Transactions on Communications, 61(12), 4934–4947.CrossRef
44.
Zurück zum Zitat Michelusi, N., Badia, L., & Zorzi, M. (2014). Optimal transmission policies for energy harvesting devices with limited state-of-charge knowledge. IEEE Transactions on Communications, 62(11), 3969–3982.CrossRef Michelusi, N., Badia, L., & Zorzi, M. (2014). Optimal transmission policies for energy harvesting devices with limited state-of-charge knowledge. IEEE Transactions on Communications, 62(11), 3969–3982.CrossRef
45.
Zurück zum Zitat Ren, X., & Liang, W. (2012). Delay-tolerant data gathering in energy harvesting sensor networks with a mobile sink. In Proc eedings of the IEEE global communications conference (GLOBECOM), Anaheim, California. Ren, X., & Liang, W. (2012). Delay-tolerant data gathering in energy harvesting sensor networks with a mobile sink. In Proc eedings of the IEEE global communications conference (GLOBECOM), Anaheim, California.
46.
Zurück zum Zitat Ren, X., & Liang, W. (2013). The use of a mobile sink for quality data collection in energy harvesting sensor networks. In IEEE wireless communications and networking conference. (pp. 1145–1150), Shanghai. Ren, X., & Liang, W. (2013). The use of a mobile sink for quality data collection in energy harvesting sensor networks. In IEEE wireless communications and networking conference. (pp. 1145–1150), Shanghai.
47.
Zurück zum Zitat Ren, X., Liang, W., & Xu, W. (2015). Data collection maximization in renewable sensor networks via time-slot scheduling. IEEE Transactions on Computers, 64(7), 1870–1883.CrossRef Ren, X., Liang, W., & Xu, W. (2015). Data collection maximization in renewable sensor networks via time-slot scheduling. IEEE Transactions on Computers, 64(7), 1870–1883.CrossRef
48.
Zurück zum Zitat Mehrabi, A., & Kim, K. (2016). Maximizing data collection throughput on a path in energy harvesting sensor networks using a mobile sink. IEEE Transactions on Mobile Computing, 15(3), 690–704.CrossRef Mehrabi, A., & Kim, K. (2016). Maximizing data collection throughput on a path in energy harvesting sensor networks using a mobile sink. IEEE Transactions on Mobile Computing, 15(3), 690–704.CrossRef
49.
Zurück zum Zitat Wittevrongel, S., & Bruneel, H. (1994). A heuristic analytic technique to calculate the cell loss ration in a leaky bucket with bursty input traffic. AEUE—International Journal of Electronics and Communications, 48(3), 162–169. Wittevrongel, S., & Bruneel, H. (1994). A heuristic analytic technique to calculate the cell loss ration in a leaky bucket with bursty input traffic. AEUE—International Journal of Electronics and Communications, 48(3), 162–169.
50.
Zurück zum Zitat Wittevrongel, S., & Bruneel, H. (1996). Analytic study of the queueing performance and the departure process of a leaky bucket with bursty input traffic. AEUE—International Journal of Electronics and Communications, 50(1), 1–10. Wittevrongel, S., & Bruneel, H. (1996). Analytic study of the queueing performance and the departure process of a leaky bucket with bursty input traffic. AEUE—International Journal of Electronics and Communications, 50(1), 1–10.
52.
Zurück zum Zitat De Cuypere, E., & Fiems, D. (2011). Performance evaluation of a kitting process. In Proceedings of the 17th international conference on analytical and stochastic modelling techniques and applications, lecture notes in computer science, (p. 6751). De Cuypere, E., & Fiems, D. (2011). Performance evaluation of a kitting process. In Proceedings of the 17th international conference on analytical and stochastic modelling techniques and applications, lecture notes in computer science, (p. 6751).
53.
Zurück zum Zitat De Cuypere, E., De Turck, K., & Fiems, D. (2012). Performance analysis of a decoupling stock in a Make-to-Order system. In Proceedings of the 14th IFAC symposium on information control problems in manufacturing, Bucharest, Romenia. De Cuypere, E., De Turck, K., & Fiems, D. (2012). Performance analysis of a decoupling stock in a Make-to-Order system. In Proceedings of the 14th IFAC symposium on information control problems in manufacturing, Bucharest, Romenia.
54.
Zurück zum Zitat De Cuypere, E., De Turck, K., & Fiems, D. (2012). Stochastic modelling of energy harvesting for low power sensor nodes. In Proceedings of the 7th international conference on queueing theory and network applications, Kyoto, Japan. De Cuypere, E., De Turck, K., & Fiems, D. (2012). Stochastic modelling of energy harvesting for low power sensor nodes. In Proceedings of the 7th international conference on queueing theory and network applications, Kyoto, Japan.
55.
Zurück zum Zitat Valentini, R., Dang, N., Levorato, M., & Bozorgzadeh, E. (2015). Modeling and control battery aging in energy harvesting systems. In Proceedings of SmartGridComm, (pp. 515–520). Valentini, R., Dang, N., Levorato, M., & Bozorgzadeh, E. (2015). Modeling and control battery aging in energy harvesting systems. In Proceedings of SmartGridComm, (pp. 515–520).
56.
Zurück zum Zitat Gelenbe, E., & Ceran, E. T. (2016). Energy packet networks with energy harvesting. IEEE Access, 4, 1321–1331.CrossRef Gelenbe, E., & Ceran, E. T. (2016). Energy packet networks with energy harvesting. IEEE Access, 4, 1321–1331.CrossRef
57.
Zurück zum Zitat Latouche, G., & Ramaswami, V. (1999). Introduction to matrix analytic methods in stochastic modeling. SIAM. Latouche, G., & Ramaswami, V. (1999). Introduction to matrix analytic methods in stochastic modeling. SIAM.
58.
Zurück zum Zitat Latouche, G. (1981). Queues with paired customers. Journal of Applied Probability, 18, 684–696.CrossRef Latouche, G. (1981). Queues with paired customers. Journal of Applied Probability, 18, 684–696.CrossRef
59.
Zurück zum Zitat Asmussen, S., & Glynn, P. W. (2007). Stochastic simulation: Algorithms and analysis. Berlin: Springer. Asmussen, S., & Glynn, P. W. (2007). Stochastic simulation: Algorithms and analysis. Berlin: Springer.
Metadaten
Titel
A queueing model of an energy harvesting sensor node with data buffering
verfasst von
Eline De Cuypere
Koen De Turck
Dieter Fiems
Publikationsdatum
25.05.2017
Verlag
Springer US
Erschienen in
Telecommunication Systems / Ausgabe 2/2018
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-017-0338-8

Weitere Artikel der Ausgabe 2/2018

Telecommunication Systems 2/2018 Zur Ausgabe

Neuer Inhalt