Skip to main content
Erschienen in: Telecommunication Systems 3/2020

09.03.2020

Performance analysis of LoRa in the 2.4 GHz ISM band: coexistence issues with Wi-Fi

verfasst von: Ladislav Polak, Jiri Milos

Erschienen in: Telecommunication Systems | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Within realization of the visions of the Internet-of-Things (IoT), Low Power Wide Area Networks (LPWANs) are undoubtedly one of the fields that attract high interest from both academic and industrial fields. To ensure reliable data exchange between low power and low data rate devices across long distances, which are the main aims of LPWAs, it is necessary to utilize advanced wireless communication technologies. Emerging LPWA technologies, for instance Long-Range (LoRa) and SigFox, offer many benefits for IoT. These technologies have been primarily developed for sub-GHz frequency bands, but, in the future, their deployment is also considered in the 2.4 GHz industrial, scientific and medical (ISM) bands. However, these unlicensed ISM bands are also used by other technologies for Wireless Local Area Network (WLAN also denoted as Wi-Fi) connectivity and other services, and therefore, coexistence issues can occur here in the future. The main aim of this paper is to perform a performance analysis of the LoRa radio signals interfered by Wi-Fi, using interferers confirming to different IEEE 802.11 family standards, in the 2.4 GHz ISM band. For this purpose, an automated measurement setup and methodology on Physical (PHY) layer are proposed and used. In general, the evaluated results confirm theoretical assumptions on high robustness of LoRa against interferences. However, our results reveal that this robustness of LoRa is highly depending not only on the used LoRa system parameters, but also on the interferer properties and the assumed coexistence scenarios (co-channel, in-band and adjacent channel interferences).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
Literatur
1.
Zurück zum Zitat Goudos, S. K., Dallas, P. I., Chatziefthymiou, S., & Kyriazakos, S. (2017). A survey of IoT key enabling and future technologies: 5G, mobile IoT, sematic web and applications. Wireless Personal Communications, 97(2), 1645–1675.CrossRef Goudos, S. K., Dallas, P. I., Chatziefthymiou, S., & Kyriazakos, S. (2017). A survey of IoT key enabling and future technologies: 5G, mobile IoT, sematic web and applications. Wireless Personal Communications, 97(2), 1645–1675.CrossRef
2.
Zurück zum Zitat Raza, U., Kulkarni, P., & Sooriyabandara, M. (2017). Low power wide area networks: An overview. IEEE Communications Surveys and Tutorials, 19(2), 855–873.CrossRef Raza, U., Kulkarni, P., & Sooriyabandara, M. (2017). Low power wide area networks: An overview. IEEE Communications Surveys and Tutorials, 19(2), 855–873.CrossRef
3.
Zurück zum Zitat Augustin, A., Yi, J., Clausen, T., & Townsley, W. M. (2016). A study of LoRa: Long range & low power networks for the Internet of Things. Sensors, 16(9), 1–18.CrossRef Augustin, A., Yi, J., Clausen, T., & Townsley, W. M. (2016). A study of LoRa: Long range & low power networks for the Internet of Things. Sensors, 16(9), 1–18.CrossRef
5.
Zurück zum Zitat Noreen, U., Bounceur, A., & Clavier, L. (2017). A study of LoRa low power and wide area network technology. In Int. conf. ATSIP, Fez, Morocco (pp. 1–6). Noreen, U., Bounceur, A., & Clavier, L. (2017). A study of LoRa low power and wide area network technology. In Int. conf. ATSIP, Fez, Morocco (pp. 1–6).
6.
Zurück zum Zitat Jebril, A. H., Sali, A., Ismail, A., & Rasid, M. F. A. (2018). Overcoming limitations of LoRa physical layer in image transmission. Sensors, 18(10), 1–22.CrossRef Jebril, A. H., Sali, A., Ismail, A., & Rasid, M. F. A. (2018). Overcoming limitations of LoRa physical layer in image transmission. Sensors, 18(10), 1–22.CrossRef
7.
Zurück zum Zitat Petajajarvi, J., et al. (2017). Performance of a low-power wide-area network based on LoRa technology: Doppler robustness, scalability, and coverage. International Journal of Distributed Sensor Networks, 13(3), 1–16.CrossRef Petajajarvi, J., et al. (2017). Performance of a low-power wide-area network based on LoRa technology: Doppler robustness, scalability, and coverage. International Journal of Distributed Sensor Networks, 13(3), 1–16.CrossRef
8.
Zurück zum Zitat Haxhibeqir, J., Van den Abeele, F., Moerman, I., & Hoebeke, J. (2017). LoRa scalability: A simulation model based on interference measurements. Sensors, 17(6), 1–25.CrossRef Haxhibeqir, J., Van den Abeele, F., Moerman, I., & Hoebeke, J. (2017). LoRa scalability: A simulation model based on interference measurements. Sensors, 17(6), 1–25.CrossRef
9.
Zurück zum Zitat Adelantado, F., et al. (2017). Understanding the limits of LoRaWAN. IEEE Communications Magazine, 55(9), 34–40.CrossRef Adelantado, F., et al. (2017). Understanding the limits of LoRaWAN. IEEE Communications Magazine, 55(9), 34–40.CrossRef
10.
Zurück zum Zitat Bor, M., & Roedig, U. (2017). LoRa transmission parameter selection. In Int. conf. DCOSS, Ottawa, ON, Canada (pp. 27–34). Bor, M., & Roedig, U. (2017). LoRa transmission parameter selection. In Int. conf. DCOSS, Ottawa, ON, Canada (pp. 27–34).
11.
Zurück zum Zitat Croce, D., et al. (2018). Impact of LoRa imperfect orthogonality: Analysis of link-level performance. IEEE Communications Letters, 22(4), 796–799.CrossRef Croce, D., et al. (2018). Impact of LoRa imperfect orthogonality: Analysis of link-level performance. IEEE Communications Letters, 22(4), 796–799.CrossRef
12.
Zurück zum Zitat Carlsson, A., Kuzminykh, L., Franksson, R., & Liljegren, A. (2018). Measuring a LoRa network: Performance, possibilities and limitations. In Int. conf. NEW2AN 2018 and ruSMART 2018, St. Petersburg, Russia (pp. 116–128). Carlsson, A., Kuzminykh, L., Franksson, R., & Liljegren, A. (2018). Measuring a LoRa network: Performance, possibilities and limitations. In Int. conf. NEW2AN 2018 and ruSMART 2018, St. Petersburg, Russia (pp. 116–128).
13.
Zurück zum Zitat Ayele, E. D., et al. (2017). Performance analysis of LoRa radio for an indoor IoT applications. In Int. conf. IoTGC), Funchal, Portugal (pp. 1–6). Ayele, E. D., et al. (2017). Performance analysis of LoRa radio for an indoor IoT applications. In Int. conf. IoTGC), Funchal, Portugal (pp. 1–6).
14.
Zurück zum Zitat Poorter, E. D., et al. (2017). Sub-GHz LPWAN network coexistence, management and virtualization: An overview and open research challenges. Wireless Personal Communications, 95(1), 187–213.CrossRef Poorter, E. D., et al. (2017). Sub-GHz LPWAN network coexistence, management and virtualization: An overview and open research challenges. Wireless Personal Communications, 95(1), 187–213.CrossRef
15.
Zurück zum Zitat Reynders, B., Meert, W., & Pollin, S. (2016). Range and coexistence analysis of long range unlicensed communication. In Proc. of int. conf. ICT, Thessaloniki, Greece (pp. 1–6). Reynders, B., Meert, W., & Pollin, S. (2016). Range and coexistence analysis of long range unlicensed communication. In Proc. of int. conf. ICT, Thessaloniki, Greece (pp. 1–6).
16.
Zurück zum Zitat Vejlgaard, B., et al. (2017). Interference impact on coverage and capacity for low power wide area IoT networks. Proc. of int. conf. WCNC (pp. 1–6). Vejlgaard, B., et al. (2017). Interference impact on coverage and capacity for low power wide area IoT networks. Proc. of int. conf. WCNC (pp. 1–6).
17.
Zurück zum Zitat Lauridsen, M., et al. (2017). Interference measurements in the European 868 MHz ISM band with focus on LoRa and SigFox. In Proc. of int. conf. WCNC (pp. 1–6). Lauridsen, M., et al. (2017). Interference measurements in the European 868 MHz ISM band with focus on LoRa and SigFox. In Proc. of int. conf. WCNC (pp. 1–6).
18.
Zurück zum Zitat Mikhaylov, K., Petajajarvi, J., & Janhunen, J. (2017). On LoRaWAN scalability: Empirical evaluation of susceptibility to inter-network interference. In Proc. of int. conf. EuCNC, Oulu, Finland (pp. 1–7). Mikhaylov, K., Petajajarvi, J., & Janhunen, J. (2017). On LoRaWAN scalability: Empirical evaluation of susceptibility to inter-network interference. In Proc. of int. conf. EuCNC, Oulu, Finland (pp. 1–7).
19.
Zurück zum Zitat Haxhibeqir, J., Shahid, A., Saelens, M., & Bauwens, J. (2018). Sub-gigahertz inter-technology interference. How harmful is it for LoRa? In 4th IEEE int. conf. ISC2, Kansas City, Missouri, USA (pp. 1–7). Haxhibeqir, J., Shahid, A., Saelens, M., & Bauwens, J. (2018). Sub-gigahertz inter-technology interference. How harmful is it for LoRa? In 4th IEEE int. conf. ISC2, Kansas City, Missouri, USA (pp. 1–7).
20.
Zurück zum Zitat Orfanidis, Ch., Feeney, L. M., Jacobsson, M., & Gunningberg, P. (2017). Investigating interference between LoRa and IEEE 802.15.4g networks. In IEEE int. conf. WiMob, Rome, Italy (pp. 1–8). Orfanidis, Ch., Feeney, L. M., Jacobsson, M., & Gunningberg, P. (2017). Investigating interference between LoRa and IEEE 802.15.4g networks. In IEEE int. conf. WiMob, Rome, Italy (pp. 1–8).
21.
Zurück zum Zitat Vangelista, L., Zanella, A., & Zorzi, M. (2015). Long-range IoT technologies: The eawn of \(\text{ LoRa }^{TM}\). In Proc. of int. conf. FABULOUS 2015, Ohrid, Republic of Macedonia (pp. 51–58). Vangelista, L., Zanella, A., & Zorzi, M. (2015). Long-range IoT technologies: The eawn of \(\text{ LoRa }^{TM}\). In Proc. of int. conf. FABULOUS 2015, Ohrid, Republic of Macedonia (pp. 51–58).
22.
Zurück zum Zitat Wendt, T., Volk, F., & Mackensen, E. (2015). A benchmark survey of long range (LoRaTM) spread-spectrum-communication at 2.45 GHz for safety applications. In Proc. of int. conf. WAMICON, Cocoa Beach, FL, USA (pp. 1–4). Wendt, T., Volk, F., & Mackensen, E. (2015). A benchmark survey of long range (LoRaTM) spread-spectrum-communication at 2.45 GHz for safety applications. In Proc. of int. conf. WAMICON, Cocoa Beach, FL, USA (pp. 1–4).
23.
Zurück zum Zitat Semtech. (2017). Application note: Wi-Fi immunity of \(\text{ LoRa }^{\textregistered }\) at 2.4 GHz. Semtech application note, long range, low power 2.4 GHz transceiver (pp. 1–20). Semtech. (2017). Application note: Wi-Fi immunity of \(\text{ LoRa }^{\textregistered }\) at 2.4 GHz. Semtech application note, long range, low power 2.4 GHz transceiver (pp. 1–20).
24.
Zurück zum Zitat Semtech. (2017). An introduction to ranging with the SX1280 transceiver. Application Note, AN1200.29 (pp. 1–30). Semtech. (2017). An introduction to ranging with the SX1280 transceiver. Application Note, AN1200.29 (pp. 1–30).
26.
Zurück zum Zitat Mikulka, J., & Hanus, S. (2008). Bluetooth and IEEE 802.11b/g coexistence simulation. Radioengineering, 17(3), 66–73. Mikulka, J., & Hanus, S. (2008). Bluetooth and IEEE 802.11b/g coexistence simulation. Radioengineering, 17(3), 66–73.
28.
Zurück zum Zitat Baronti, P., et al. (2007). Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards. Computer Communications, 30(7), 1655–1695.CrossRef Baronti, P., et al. (2007). Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards. Computer Communications, 30(7), 1655–1695.CrossRef
29.
Zurück zum Zitat Milos, J., Polak, L., Slanina, M., & Kratochvil, T. (2016). Link-level simulator for WLAN networks. In Proc. of int. workshop (\(\text{ IWSLS } ^{2}\)), Vienna, Austria (pp. 1–4). Milos, J., Polak, L., Slanina, M., & Kratochvil, T. (2016). Link-level simulator for WLAN networks. In Proc. of int. workshop (\(\text{ IWSLS } ^{2}\)), Vienna, Austria (pp. 1–4).
32.
Zurück zum Zitat Noreen, U., Clavier, L., & Bounceur, A. (2018). LoRa-like CSS-based PHY layer, capture effect and serial interference cancellation. In Int. conf. Europen wireless, Catania, Italy (pp. 68–73). Noreen, U., Clavier, L., & Bounceur, A. (2018). LoRa-like CSS-based PHY layer, capture effect and serial interference cancellation. In Int. conf. Europen wireless, Catania, Italy (pp. 68–73).
33.
Zurück zum Zitat Olsson, K., & Finnsson, S. (2017). Exploring LoRa and LoRaWAN—a suitable protocol for IoT weather stations? Master’s thesis in communication engineering, 84 pages. Olsson, K., & Finnsson, S. (2017). Exploring LoRa and LoRaWAN—a suitable protocol for IoT weather stations? Master’s thesis in communication engineering, 84 pages.
34.
Zurück zum Zitat Popescu, V., Fadda, M., & Murroni, M. (2016). Performance analysis of IEEE 802.22 wireless regional area network in the presence of digital video broadcasting—second generation terrestrial broadcasting services. IET Communications, 10(8), 922–928.CrossRef Popescu, V., Fadda, M., & Murroni, M. (2016). Performance analysis of IEEE 802.22 wireless regional area network in the presence of digital video broadcasting—second generation terrestrial broadcasting services. IET Communications, 10(8), 922–928.CrossRef
35.
Zurück zum Zitat Tekovic, A., Bonefacic, D., Sisul, G., & Nad, R. (2017). Interference analysis between mobile radio and digital terrestrial television in the digital dividend spectrum. Radioengineering, 26(1), 211–220.CrossRef Tekovic, A., Bonefacic, D., Sisul, G., & Nad, R. (2017). Interference analysis between mobile radio and digital terrestrial television in the digital dividend spectrum. Radioengineering, 26(1), 211–220.CrossRef
36.
Zurück zum Zitat Klozar, L., Polak, L., Kaller, O., & Prokopec, J. (2013). Effect of co-existence interferences on QoS of HSPA/WCDMA mobile networks. In Proc. of int. conf. Radioelektronika, Pardubice, Czech Republic (pp. 312–315). Klozar, L., Polak, L., Kaller, O., & Prokopec, J. (2013). Effect of co-existence interferences on QoS of HSPA/WCDMA mobile networks. In Proc. of int. conf. Radioelektronika, Pardubice, Czech Republic (pp. 312–315).
37.
Zurück zum Zitat Milos, J., Polak, L., & Rozum, S. (2019). Analysis of indoor LTE-DL/Wi-Fi coexistence scenarios with automated measurement testbed. In Proc. of int. conf. Radioelektronika, Pardubice, Czech Republic (pp. 308–312). Milos, J., Polak, L., & Rozum, S. (2019). Analysis of indoor LTE-DL/Wi-Fi coexistence scenarios with automated measurement testbed. In Proc. of int. conf. Radioelektronika, Pardubice, Czech Republic (pp. 308–312).
38.
Zurück zum Zitat R&S. (2014). R&S FSQ signal analyzer. Operating manual, R&S (847 pages). R&S. (2014). R&S FSQ signal analyzer. Operating manual, R&S (847 pages).
39.
Zurück zum Zitat National Instruments. Introduction to wireless LAN measurements from 802.11a to 802.11ac. Technical Documentation, National Instruments (42 pages). National Instruments. Introduction to wireless LAN measurements from 802.11a to 802.11ac. Technical Documentation, National Instruments (42 pages).
40.
Zurück zum Zitat Tektronix. (2013). Wi-Fi: Overview of the 802.11 physical layer and transmitter measurements. Technical Documentation, Tektronix, Primer (44 pages). Tektronix. (2013). Wi-Fi: Overview of the 802.11 physical layer and transmitter measurements. Technical Documentation, Tektronix, Primer (44 pages).
41.
Zurück zum Zitat ETSI EN 300 328. (2017). Wideband transmission systems; data transmission equipment operating in the 2.4 GHz ISM band and using wide band modulation techniques; Harmonised Standard for access to radio spectrum. ETSI, Draft, V2.2.0 (105 pages). ETSI EN 300 328. (2017). Wideband transmission systems; data transmission equipment operating in the 2.4 GHz ISM band and using wide band modulation techniques; Harmonised Standard for access to radio spectrum. ETSI, Draft, V2.2.0 (105 pages).
42.
Zurück zum Zitat Guizar, A., Ochoa, M. N., Mannoni, V., & Maman, M. (2019). LPWA deployment for factory of the future: LoRa or Turbo-FSK based technology? In Proc. of int. Ssmp. PIMRC, Istanbul, Turkey (pp. 1–6). Guizar, A., Ochoa, M. N., Mannoni, V., & Maman, M. (2019). LPWA deployment for factory of the future: LoRa or Turbo-FSK based technology? In Proc. of int. Ssmp. PIMRC, Istanbul, Turkey (pp. 1–6).
Metadaten
Titel
Performance analysis of LoRa in the 2.4 GHz ISM band: coexistence issues with Wi-Fi
verfasst von
Ladislav Polak
Jiri Milos
Publikationsdatum
09.03.2020
Verlag
Springer US
Erschienen in
Telecommunication Systems / Ausgabe 3/2020
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-020-00658-w

Weitere Artikel der Ausgabe 3/2020

Telecommunication Systems 3/2020 Zur Ausgabe

Neuer Inhalt