Skip to main content
Log in

Effects of electron tunneling and nonresonance quenching of photoluminescence in semiconducting CdSe/ZnS AND CdSe nanocrystals by porphyrin molecules in joint complexes

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The quenching of photoluminescence (PL) in semiconducting CdSe/ZnS and CdSe nanocrystals (NC) of various sizes during surface passivation by molecules of tetrapyridylporphyrins (P) in toluene at 295 K was investigated. It was shown that resonance transfer of energy NC → P plays a minor role in PL quenching (<10%), while photoinduced electron transfer NC → P is absent. On the basis of experimental data and quantum-mechanical calculations it was established that with identical molar ratio x = CP/CNC the probability of quenching k q decreases with increase in the size of the NC while the PL quenching process itself under conditions of quantum confinement is due to electron tunneling of the excited electron–hole pair on the surface of the NC followed by localization of the organic ligand (P) on anchor groups. The obtained results are of interest for investigating the mechanisms of the blinking of PL in single semiconductor nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Klimov, Handbook of Nanostructured Materials and Nanotechnology, H. S. Nalwa (ed.), Academic Press (2000), Vol. 4, pp. 451–527.

  2. A. L. Rogach (ed.), Semiconductor Nanocrystal Quantum Dots (Synthesis, Assembly, Spectroscopy and Applications), Springer-Verlag, Wien (2008).

    Google Scholar 

  3. A. L. Stroyuk, A. I. Kryukov, S. Ya. Kuchmii, and V. D. Pokhodenko, Teor. Éksp. Khim., 41, No. 2, 67–87 (2005). [Theor. Experim. Chem., 41, No. 2, 67-91 (2005).]

    CAS  Google Scholar 

  4. C. Landes, C. Burda, M. Braun, and M. A. El-Sayed, J. Phys. Chem. B, 105, 2981-2986 (2001).

    Article  CAS  Google Scholar 

  5. A. R. Clapp, I. L. Medintz, and H. Mattoussi, Chem. Phys. Chem., 7, 47-57 (2006).

    CAS  Google Scholar 

  6. M. De, P. S. Ghosh, and V. M. Rotello, Adv. Mater., 20, 1–17 (2008).

    Article  Google Scholar 

  7. R. Gill, M. Zayatz, and I. Wilner, Angew. Chem., 120, 7714–7736 (2008).

    Article  Google Scholar 

  8. R. Jin, Angew. Chem. Int. Ed., 47, 2–6 (2008).

    Article  Google Scholar 

  9. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science, 295, 2425–2427 (2002).

    Article  CAS  Google Scholar 

  10. I. Gur, N. A. Fromer, C.-P. Chen, et al., Nano Lett., 7, 409–414 (2007).

    Article  CAS  Google Scholar 

  11. M. Anni, L. Manna, R. Cigolani, et al., Appl. Phys. Lett., 85, 4169–4176 (2004).

    Article  CAS  Google Scholar 

  12. M. Sykora, M. A. Petruska, J. Alstrum-Acevedo, et al., J. Am. Chem. Soc., 128, 9984–9985 (2006).

    Article  CAS  Google Scholar 

  13. I. Potapova, R. Mruk, C. Hübner, et al., Angew. Chem., 117, 2490–2493 (2005).

    Article  Google Scholar 

  14. T. Pons, I. L. Medintz, M. Sykora, and H. Matoussi, Phys. Rev. B, 73, 245302 (2006).

    Article  Google Scholar 

  15. E. Zenkevich, A. Shulga, F. Cichos, et al., J. Phys. Chem. B, 109, 8679–8692 (2005).

    Article  CAS  Google Scholar 

  16. E. Zenkevich, T. Blaudeck, A. Shulga, et al., J. Luminescence, 122, 784–788 (2007).

    Article  Google Scholar 

  17. S. Dayal, Y. Lou, A. C. S. Samia, et al., J. Am. Chem. Soc., 128, 13974–13975 (2006).

    Article  CAS  Google Scholar 

  18. A. R. Clapp, I. L. Medintz, J. M. Mauro, et al., J. Am. Chem. Soc., 126, 301–310 (2004).

    Article  CAS  Google Scholar 

  19. T. C. Lim, V. J. Bailey, Y.-P. Ho, and T.-H. Wang, Nanotechnology, 19, 75701 (2008).

    Article  Google Scholar 

  20. O. Schmeltz, A. Mews, T. Basche, et al., Langmuir, 17, 2861–2865 (2001).

    Article  Google Scholar 

  21. A. M. Funston, J. J. Jasieniak, and P. Mulvaney, Adv. Mater., 9999, 1–7 (2008).

    Google Scholar 

  22. E. I. Zenkevich, A. M. Shulga, T. Blaudeck, and C. von Borczyskowski, Physics, Chemistry and Application of Nanostructures, V. I. Borisenko, S. V. Gaponenko, V. S. Gurin (eds.), World Sci. Publ., New Jersey; London; Singapore (2007), pp. 133–136.

    Google Scholar 

  23. F. Cichos, C. von Borczyskowski, and M. Orrit, Curr. Opin. Colloid Interface Sci., 12, 272–284 (2007).

    Article  CAS  Google Scholar 

  24. É. I. Zen’kevich, E. I. Sagun, A. A. Yarovoi, et al., Opt. Spektroskop., 103, 998–1009 (2007).

    Google Scholar 

  25. E. Zenkevich, A. Shulga, T. Blaudeck, et al., Materials of First International Conference “Nanostructural Materials-2008, Belarus, Russia, Ukraine” [in Russian], April 22–25, 2008, Minsk (2008), p. 37.

  26. A. Issac, S. Jin, and T. Lian, J. Am. Chem. Soc., 130, 11280–11281 (2008).

    Article  CAS  Google Scholar 

  27. S. Dayal, R. Królocki, Y. Lou, et al., Appl. Phys. B, 84, 309–315 (2006).

    Article  CAS  Google Scholar 

  28. S. Kung, M. Yasuda, H. Miyasaka, et al., ChemSuSChem, 1, 254–261 (2008).

    Article  Google Scholar 

  29. D. M. Willert, L. L. Carillo, J. Jung, and A. van Orden, Nano Lett., 1, 469–474 (2001).

    Article  Google Scholar 

  30. S. Sadhu and A. Patra, Chem. Phys. Chem., 9, 2052–2058 (2008).

    CAS  Google Scholar 

  31. W. Lu, Y. Tokuhiro, I. Kmezu, et al., Appl. Phys. Lett., 89, 143901–3 (2006).

    Article  Google Scholar 

  32. F. R. Longo, M. G. Finarelli, and J. B. Kim, J. Heterocycl. Chem., 6, 927–931 (1969).

    Article  CAS  Google Scholar 

  33. R. G. Little, J. A. Anton, P. A. Loach, and J. A. Ibers, J. Heterocycl. Chem., 12, 343-349 (1975).

    Article  CAS  Google Scholar 

  34. A. V. Chernook, A. M. Shulga, E. I. Zenkevich, et al., J. Phys. Chem., 100, 1918-1926 (1996).

    Article  CAS  Google Scholar 

  35. D. S. Kilin, K. Tsemekhman, O. V. Prezhdo, et al., J. Photochem. Photobiol. A, 190, 342–354 (2007).

    Article  CAS  Google Scholar 

  36. B. Valeur, Molecular Fluorescence – Principles and Applications, Wiley-VCH, Weinheim (2002).

    Google Scholar 

  37. V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter, North-Holland Publ. Co., Amsterdam, New York (1982).

    Google Scholar 

  38. É. I. Zen’kevich, A. M. Shul’ga, A. V. Chernook, and G. P. Gurinovich, Zh. Prikl. Spektroskop., 45, 984-991 (1986).

    Google Scholar 

  39. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Acad., New York (1999).

    Google Scholar 

  40. A. Issac, C. von Borczyskowski, and F. Cichos, Phys. Rev. B, 71, 161302 (2005).

    Article  Google Scholar 

  41. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, et al., J. Phys. Chem. B, 101, 9463–9475 (1997).

    Article  CAS  Google Scholar 

  42. J. W. Haus, H. S. Zhou, I. Homma, and H. Komiyama, Phys. Rev. B, 47, 1359–1365 (1993).

    Article  CAS  Google Scholar 

  43. T. S. Marshall and T. M. Wilson, Phys. Rev. B, 50, 15034–15046 (1995).

    Article  Google Scholar 

  44. S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals, Cambridge Univ. Press, Cambridge (1998).

    Google Scholar 

  45. S. Nomura and T. Kobayashi, Solid State Commun., 78, 677-680 (1991).

    Article  CAS  Google Scholar 

  46. C. A. Leatherdale and M. G. Bawendi, Phys. Rev. B, 63, 165315 (2001).

    Article  Google Scholar 

  47. M. Nirmal, B. O. Dabbousi, M. G. Bawendi, et al., Nature, 383, 802–804 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to É. I. Zen’kevich.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 45, No. 1, pp. 17–26, January–February, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zen’kevich, É.I., Blaudeck, T., Heidernätsch, M. et al. Effects of electron tunneling and nonresonance quenching of photoluminescence in semiconducting CdSe/ZnS AND CdSe nanocrystals by porphyrin molecules in joint complexes. Theor Exp Chem 45, 23–34 (2009). https://doi.org/10.1007/s11237-009-9058-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-009-9058-9

Key words

Navigation