Skip to main content
Log in

Somatic embryogenesis from immature peach palm inflorescence explants: towards development of an efficient protocol

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Various factors affect the induction of somatic embryogenesis in peach palm (Bactris gasipaes Kunth). Among these, both the type and level of auxins had the greatest influence on in vitro responses, although the genotype and the developmental stage of the explants also influenced results. Younger inflorescences were more competent to respond to SE induction than more mature inflorescences and the use of a pre-treatment with 2,4-D (200 μM) in liquid MS culture medium also increased the embryogenic capacity, and diminished the development of flower buds. Higher oxidation rates were observed in explants maintained on 2,4-D-supplemented culture medium, while on 300 μM or 600 μM Picloram and Dicamba lower oxidation rates were observed. The progression from floral meristem to flower bud occurred at high frequency when low concentrations of auxins were used, independent of the type. Higher concentrations of Picloram or Dicamba reduced or even inhibited flower bud development. Picloram also enhanced the embryogenic induction rate more than 2,4-D and Dicamba, and among the concentrations evaluated 300 μM Picloram enhanced induction for both genotypes, with significant differences between genotypes. The best combination of variables used the least mature inflorescence (Infl1) from genotype I with the 2,4-D pre-treatment and 300 μM Picloram to generate 5 embryogenic calli from 18 explants; 26 embryos were obtained on average from each embryogenic callus. From these, eighteen embryos converted to plantlets and six of these survived transfer to the greenhouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

2-iP:

2-isopentyladenine (6-dimethylaminopurine)

Dicamba:

3,6-dichloro-2-methoxybenzoic acid

MS:

Murashige and Skoog’s salts

NAA:

Naphthalene acetic acid

Picloram:

4-amino-3,5,6-trichloropicolinic acid

SE:

Somatic embryogenesis

References

  • Aberlenc-Bertossi F, Noirot M, Duval Y (1999) BA enhances the germination of oil palm somatic embryos derived from embryogenic suspension cultures. Plant Cell Tissue Organ Cult 56(1):53–57

    Article  CAS  Google Scholar 

  • Al-Khayri JM, Al-Bahrany AM (2004) Genotype-dependent in vitro response of date palm (Phoenix dactylifera L.) cultivars to silver nitrate. Sci Hortic 99(2):153–162

    Article  CAS  Google Scholar 

  • Alexandrova KS, Conger BV (2002) Isolation of two somatic embryogenesis-related genes from orchardgrass (Dactylis glomerata). Plant Sci 162(2):301–307

    Article  CAS  Google Scholar 

  • Almeida M, Kerbauy GB (1996) Micropropagation of Bactris gasipaes (Palmae) through flower bud culture. Rev Bras Fisiol Bras 8(3):215–217

    Google Scholar 

  • Arias OM (1985) Propagacion vegetative por cultivo de tejidos del pejibaye (Bactris gasipaes H.B.K.). ASBANA 24(9):24–27

    Google Scholar 

  • Barro F, Martin A, Lazzeri PA, Barcelo P (1999) Medium optimization for efficient somatic embryogenesis and plant regeneration from immature inflorescences and immature scutella of elite cultivars of wheat, barley and tritordeum. Euphytica 108(3):161–167

    Article  Google Scholar 

  • Benkirane H, Sabounji K, Chlyah A, Chlyah H (2000) Somatic embryogenesis and plant regeneration from fragments of immature inflorescences and coleoptiles of durum wheat. Plant Cell Tissue Organ Cult 61(2):107–113

    Article  Google Scholar 

  • Clement CR (1987) Preliminary observation on the developmental curve of pejibaye (Bactris gasipaes H.B.K.) inflorescences. Rev Biol Trop 35(1):151–153

    Google Scholar 

  • Clement CR, Santos LA, Andrade JS (1999) Conservação de palmito de pupunha em atmosfera modificada. Acta Amazônica 29(3):437–445

    CAS  Google Scholar 

  • Ezhova TA (2003) Genetic control of totipotency of plant cells in vitro. Russ J Dev Biol 34(4):197–204

    Article  CAS  Google Scholar 

  • Feher A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74(3):201–228

    Article  CAS  Google Scholar 

  • Fernando SC, Gamage CKA (2000) Abscisic acid induced somatic embryogenesis in immature embryo explants of coconut (Cocos nucifera L.). Plant Sci 151(2):193–198

    Article  PubMed  CAS  Google Scholar 

  • Guerra MP, Handro W (1998) Somatic embryogenesis and plant regeneration in different organs of Euterpe edulis Mart. (Palmae): Control and structural features. J Plant Res 111(1101):65–71

    Article  Google Scholar 

  • Guerra MP, Torres AC, Teixeira JB (1999) Embriogênese somática e sementes sintéticas. In: Torres AC, Caldas LS, Buso JA (eds) Cultura de tecidos e transformação genética de plantas. SPI/Embrapa, Brasília, pp 533–568

    Google Scholar 

  • Karun A, Siril EA, Radha E, Parthasarathy VA (2004) Somatic embryogenesis and plantlet regeneration from leaf and inflorescence explants of arecanut (Areca catechu L.). Curr Sci 86(12):1623–1628

    Google Scholar 

  • Mora-Urpí J, Weber JC, Clement CR (1997) Peach-Palm (Bactris gasipaes Kunth) Promoting the conservation and use of underutilized and neglected crops, (81 p.). Institute of Plant Genetics and Crop Plant Research and International Plant Genetic Resources Institute, Rome, Italy

    Google Scholar 

  • Morcillo F, Aberlenc-Bertossi F, Noirot M, Hamon S, Duval Y (1999) Differential effects of glutamine and arginine on 7S globulin accumulation during the maturation of oil palm somatic embryos. Plant Cell Rep 18(10):868–872

    Article  CAS  Google Scholar 

  • Morel G, Wetmore RH (1951) Tissue Culture of Monocotyledons. Am J Bot 38(2):138–140

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Nhut DT, Le BV, Van KTT (2000) Somatic embryogenesis and direct shoot regeneration of rice (Oryza sativa L.) using thin cell layer culture of apical meristematic tissue. J Plant Physiol 157(5):559–565

    CAS  Google Scholar 

  • Quiroz-Figueroa FR, Fuentes-Cerda CFJ, Rojas-Herrera R, Loyola-Vargas VM (2002) Histological studies on the developmental stages and differentiation of two different somatic embryogenesis systems of Coffea arabica. Plant Cell Rep 20(12):1141–1149

    Article  CAS  Google Scholar 

  • Rival A, Beulé T, Lavergne D, Nato A, Havaux M, Puard M (1997) Development of photosynthetic characteristics in oil palm during in vitro micropropagation. J Plant Physiol 150:520–527

    CAS  Google Scholar 

  • Stein M, Stephens C (1991) Effect of 2,4-Dichlorophenoxyacetic Acid and Activated-Charcoal on Somatic Embryogenesis of Bactris-Gasipaes Hbk. Turrialba 41(2):196–201

    CAS  Google Scholar 

  • Teixeira JB, Sondahl MR, Kirby EG (1993) Somatic embryogenesis from Immature zygotic embryos of oil palm. Plant Cell Tissue Organ Cult 34(3):227–233

    Article  Google Scholar 

  • Teixeira JB, Sondahl MR, Kirby EG (1994) Somatic embryogenesis from immature inflorescences of oil palm. Plant Cell Rep 13(5):247–250

    Article  CAS  Google Scholar 

  • Teixeira JB, Söndahl MR, Nakamura T, Kirby EG (1995) Establishment of oil palm cell suspensions and plant regeneration. Plant Cell Tissue Organ Cult 40(2):105–111

    Article  Google Scholar 

  • Valverde R, Arias O, Thorpe TA (1987) Picloram-induced somatic embryogenesis in pejibaye palm (Bactris gasipaes HBK). Plant Cell Tissue Organ Cult 10(2):149–156

    Article  CAS  Google Scholar 

  • Vasil IK (1987) Developing cell and tissue-culture systems for the improvement of cereal and grass crops. J Plant Physiol 128(3):193–218

    Google Scholar 

  • Verdeil JL, Huet C, Grosdemange F, Buffard-Morel J (1994) Plant regeneration from cultured immature inflorescences of coconut (Cocos nucifera L): Evidence for somatic embryogenesis. Plant Cell Rep 13(3–4):218–221

    CAS  Google Scholar 

  • Vikrant, Rashid A (2003) Somatic embryogenesis or shoot formation following high 2,4-D pulse-treatment of mature embryos of Paspalum scrobiculatum. Biol Plant 46(2):297–300

    Article  CAS  Google Scholar 

  • Yeung EC (1995) Structural and developmental patterns in somatic embryogenesis. In: Thorpe T (ed) In vitro embryogenesis in plants. Kluwer Academic Publishing, Dordrecht, pp 205–247

    Google Scholar 

  • Yuyama LKO, Aguiar JPL, Yuyama K, Clement CR, Macedo SHM, Favaro DIT, Afonso C, Vasconcellos MBA, Pimentel SA, Badolato ESG, Vannucchi H (2003) Chemical composition of the fruit mesocarp of three peach palm (Bactris gasipaes) populations grown in Central Amazonia, Brazil. Int J Food Sci Nutr 54(1):49–56

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The first author thanks the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES, Ministry of Education, Brasília, Brazil for financial support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel P. Guerra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinmacher, D.A., Clement, C.R. & Guerra, M.P. Somatic embryogenesis from immature peach palm inflorescence explants: towards development of an efficient protocol. Plant Cell Tiss Organ Cult 89, 15–22 (2007). https://doi.org/10.1007/s11240-007-9207-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-007-9207-6

Keywords

Navigation