Skip to main content
Log in

Mitotic chromosome doubling of plant tissues in vitro

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

In vitro chromosome doubling can be induced by several antimitotic agents. The most commonly used are colchicine, oryzalin and trifluralin. The process of induced chromosome doubling in vitro consists of a typical succession of sub-processes, including an induction phase and a confirmation protocol to measure the rate of success. The induction step depends on a large number of variables: media, antimitotic agents, explant types, exposure times and concentrations. Flow cytometry is the pre-eminent method for evaluation of the induced polyploidization. However, alternative confirmation methods, such as chromosome counts and morphological observations, are also used. Since polyploidization has many consequences for plant growth and development, chromosome doubling has been intensively studied over the years and has found its way to several applications in plant breeding. This review gives an overview of the common methods of chromosome doubling in vitro, the history of the technique, and progress made over the years. The applications of chromosome doubling in a broader context are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

DMSO:

Dimethyl sulfoxide

MTOC:

Microtubule organizing centre

SI:

Self-incompatibility

References

  • Adaniya S, Shirai D (2001) In vitro induction of tetraploid ginger (Zingiber officinale Roscoe) and its pollen fertility and germinability. Sci Hortic 88:277–287

    Google Scholar 

  • Al Hakimi A, Monneveaux P, Nachit MM (1998) Direct and indirect selection for drought tolerance in alien tetraploid wheat × durum wheat crosses. Euphytica 100:287–294

    Google Scholar 

  • Aleza P, Juárez J, Ollitrault P, Navarro L (2009) Production of tetraploid plants of non apomictic citrus genotypes. Plant Cell Rep 28:1837–1846

    CAS  PubMed  Google Scholar 

  • Allum JF, Bringloe DH, Roberts AV (2007) Chromosome doubling in a Rosa rugosa Thunb. hybrid by exposure of in vitro nodes to oryzalin: the effects of node length, oryzalin concentration and exposure time. Plant Cell Rep 26:1977–1984

    CAS  PubMed  Google Scholar 

  • Anderson JA, Moussetdeclas C, Williams EG, Taylor NL (1991) An in vitro chromosome doubling method for clovers (Trifolium spp.). Genome 34:1–5

    Google Scholar 

  • Arène L, Bellenot-Kapusta V, Belin J, Cadic A, Clérac M, Decourtye L, Duron M (2007) Breeding program on woody ornamental plants in Angers—France: a collaboration of 32 years between INRA and SAPHO. Acta Hort 743:35–38

    Google Scholar 

  • Aryavand A, Ehdaie B, Tran B, Waines JG (2003) Stomatal frequency and size differentiate ploidy levels in Aegilops neglecta. Genet Resour Crop Ev 50:175–182

    CAS  Google Scholar 

  • Ascough GD, van Staden J, Erwin JE (2008) Effectiveness of colchicine and oryzalin at inducing polyploidy in Watsonia lepida NE Brown. Hortscience 43:2248–2251

    Google Scholar 

  • Awoleye F, Van Duren M, Dolezel J, Novak FJ (1994) Nuclear DNA content and in vitro induced somatic polyploidisation cassava (Manihot esculenta Crantz) breeding. Euphytica 76:195–202

    CAS  Google Scholar 

  • Bajer AS, Molebajer J (1986) Drugs with colchicine-like effects that specifically disassemble plant but not animal microtubules. Ann NY Acad Sci 466:767–784

    CAS  PubMed  Google Scholar 

  • Bakry F, de la Reberdière PN, Pichot S, Jenny C (2007) In liquid medium colchicine treatment induces non chimerical doubled-diploids in a wide range of mono- and interspecific diploid banana clones. Fruits 62:3–12

    CAS  Google Scholar 

  • Barow M, Jovtchev G (2007) Endopolyploidy in plants and its analysis by flow cytometry. In: Dolezel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley, Weinheim, pp 349–372

    Google Scholar 

  • Bartels P, Hilton J (1973) Comparison of trifluralin, oryzalin, pronamide, propham, and colchicine treatments on microtubules. Pest Biochem Physiol 3:462–472

    CAS  Google Scholar 

  • Bartish I, Korkhovoy V, Fomina Y, Lim Y (1999) A new approach to obtain polypoid forms of apple. Acta Hort 484:561–564

    Google Scholar 

  • Berkov S, Philipov S (2002) Alkaloid production in diploid and autotetraploid plants of Datura stramonium. Pharma Biol 40:617–621

    CAS  Google Scholar 

  • Blakeslee A (1939) The present and potential service of chemistry to plant breeding. Am J Bot 26:163–172

    CAS  Google Scholar 

  • Blakeslee A, Avery A (1937) Methods of inducing doubling of chromosomes in plants by treatment with colchicine. J Hered 28:393–411

    CAS  Google Scholar 

  • Bohanec B (2003) Ploidy determination using flow cytometry. In: Maluszynski M, Kasha KJ, Forster BP, Szorejko I (eds) Doubled haploid production in crop plants. Kluwer, Dordrecht, pp 397–403

    Google Scholar 

  • Brewbaker JL (1958) Self-incompatibility in tetraploid strains of Trifolium hybridum. Hereditas 44:547–553

    Google Scholar 

  • Brinkley B, Rao P (1973) Nitrous oxide: effects on the mitotic apparatus and chromosome movement in HeLa cells. J Cell Biol 58:96–106

    CAS  PubMed  Google Scholar 

  • Brummer EC, Cazcarro PM, Luth D (1999) Ploidy determination of alfalfa germplasm accessions using flow cytometry. Crop Sci 39:1202–1207

    Google Scholar 

  • Campos JMS, Davide LC, Salgado CC, Santos FC, Costa PN, Silva PS, Alves CCS, Viccini LF, Pereira AV (2009) In vitro induction of hexaploid plants from triploid hybrids of Pennisetum purpureum and Pennisetum glaucum. Plant Breed 128:101–104

    CAS  Google Scholar 

  • Chakraborti SP, Vijayan K, Roy B, Qadri S (1998) In vitro induction of tetraploidy in mulberry (Morus alba L.). Plant Cell Rep 17:799–803

    CAS  Google Scholar 

  • Chapman MA, Abbott RJ (2010) Introgression of fitness genes across a ploidy barrier. New Phytol 186:63–71

    CAS  PubMed  Google Scholar 

  • Chauvin JE, Label A, Kermarrec MP (2005) In vitro chromosome-doubling in tulip (Tulipa gesneriana L.). J Hortic Sci Biotech 80:693–698

    Google Scholar 

  • Chen LL, Gao SL (2007) In vitro tetraploid induction and generation of tetraploids from mixoploids in Astragalus membranaceus. Sci Hortic 112:339–344

    CAS  Google Scholar 

  • Chen WH, Tang CY, Kao YL (2009) Ploidy doubling by in vitro culture of excised protocorms or protocorm-like bodies in Phalaenopsis species. Plant Cell Tissue Organ Cult 98:229–238

    CAS  Google Scholar 

  • Cohen D, Yao JL (1996) In vitro chromosome doubling of nine Zantedeschia cultivars. Plant Cell Tissue Organ Cult 47:43–49

    Google Scholar 

  • Cousin A, Heel K, Cowling WA, Nelson AN (2009) An efficient high-troughput flow cytometric method for estimating DNA ploidy level in plants. Cytom Part A 75A:1015–1019

    CAS  Google Scholar 

  • Crane MB, Lewis D (1942) Genetical studies in pears. III. Incompatibility and sterility. J Genet 43:31–42

    Google Scholar 

  • de Carvalho JFRP, de Carvalho CR, Otoni WC (2005) In vitro induction of polyploidy in annatto (Bixa orellana). Plant Cell Tissue Organ Cult 80:69–75

    Google Scholar 

  • De Mello e Silva M, Callegari J, Zanettini B (2000) Induction and identification of polyploids in Cattleya intermedia Lindl. (Orchidaceae) by in vitro techniques. Ciencia Rural 30:105–111

    Google Scholar 

  • de Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants. Springer, Berlin

    Google Scholar 

  • De Schepper S, Leus L, Eeckhaut T, Van Bockstaele E, Debergh P, De Loose M (2004) Somatic polyploid petals: regeneration offers new roads for breeding Belgian pot azaleas. Plant Cell Tissue Organ Cult 76:183–188

    Google Scholar 

  • Devine MD, Duke SO, Fedtke C (1993) Physiology of herbicide action. PTR, Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Dewey DR (1980) Some application and misapplication of induced polyploidy to plant breeding. In: Lewis WH (ed) Polyploidy: biological relevance, vol 13. Plenum Press, New York, pp 445–470

    Google Scholar 

  • Dewitte W, Murray JAH (2003) The plant cell cycle. Annu Rev Plant Biol 54:235–264

    CAS  PubMed  Google Scholar 

  • Dewitte A, Eeckhaut T, Van Huylenbroeck J, Van Bockstaele E (2009) Occurrence of viable unreduced pollen in a Begonia collection. Euphytica 168:81–94

    Google Scholar 

  • Dhooghe E, Denis S, Eeckhaut T, Reheul D, Van Labeke MC (2009a) In vitro induction of tetraploids in ornamental Ranunculus. Euphytica 168:33–40

    CAS  Google Scholar 

  • Dhooghe E, Grunewald W, Leus L, Van Labeke MC (2009b) In vitro polyploidisation of Helleborus species. Euphytica 165:89–95

    Google Scholar 

  • Dolezel J, Greilhuber J, Suda J (2007) Flow cytometry with plants: an overview. In: Dolezel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley, Weinheim, pp 41–65

    Google Scholar 

  • Dore C (1976) Chromosome doubling of asparagus (Asparagus officinalis) haploids by in vitro culture of colchicine treated meristems. Ann Amélioration Plant 26:647–653

    Google Scholar 

  • Dunn BL, Lindstrom JT (2007) Oryzalin-induced chromosome doubling in Buddleja to facilitate interspecific hybridization. Hortscience 42:1326–1328

    Google Scholar 

  • Dutt M, Vasconcellos M, Song KJ, Gmitter FG Jr, Grosser JW (2010) In vitro production of autotetraploid Ponkan mandarin (Citrus reticulata Blanco) using cell suspension cultures. Euphytica 173:235–242

    CAS  Google Scholar 

  • Eeckhaut T (2003) Ploidy breeding and interspecific hybridization in Spathiphyllum and woody ornamentals. PhD thesis, Faculty of Agricultural and Applied Biological Sciences

  • Eeckhaut T, Samijn G, Van Bockstaele E (2002) In vitro polyploidy induction in Rhododendron simsii hybrids. Acta Hort 572:43–49

    Google Scholar 

  • Eeckhaut T, Werbrouck S, Leus L, Van Bockstaele E, Debergh P (2004) Chemically induced polyploidization in Spathiphyllum wallisii Regel through somatic embryogenesis. Plant Cell Tissue Organ Cult 78:241–246

    CAS  Google Scholar 

  • Eeckhaut T, Leus L, Van Huylenbroeck J (2005) Exploitation of flow cytometry for plant breeding. Acta Physiol Plant 27:743–750

    Google Scholar 

  • Eigsti O, Dustin P (1955) Colchicine in agriculture, medicine, biology, chemistry. Iowa University Press, Ames

    Google Scholar 

  • Entani T, Takayama S, Iwano M, Shiba H, Che FS, Isogai A (1999) Relationship between polyploidy and pollen self-incompatibility phenotype in Petunia hybrida Vilm. Biosci Biotechnol Biochem 63:1882–1888

    CAS  PubMed  Google Scholar 

  • Escadon AS, Hagiwara JC, Alderete LM (2006) A new variety of Bacopa monnieri obtained by in vitro polyploidisation. Electron J Biotechn 9(3):181–186

    Google Scholar 

  • Ewald D, Ulrich K, Naujoks G, Schroder MB (2009) Induction of tetraploid poplar and black locust plants using colchicine: chloroplast number as an early marker for selecting polyploids in vitro. Plant Cell Tissue Organ Cult 99:353–357

    Google Scholar 

  • Francis D (2007) The plant cell cycle—15 years on. New Phytol 174:261–278

    CAS  PubMed  Google Scholar 

  • Gairdner AE (1926) Campanula persicifolia and its tetraploid form, ‘Telhan Beauty’. J Genet 16:341–351

    Google Scholar 

  • Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051

    CAS  PubMed  Google Scholar 

  • Ganga M, Chezhiyan N (2002) Influence of the antimitotic agents colchicine and oryzalin on in vitro regeneration and chromosome doubling of diploid bananas (Musa spp.). J Hortic Sci Biotech 77:572–575

    CAS  Google Scholar 

  • Gao SL, Zhu DN, Cai ZH, Xu DR (1996) Autotetraploid plants from colchicine treated bud culture of Salvia miltiorrhiza Bge. Plant Cell Tissue Organ Cult 47:73–77

    CAS  Google Scholar 

  • Gao SL, Chen BJ, Zhu DN (2002) In vitro production and identification of autotetraploids of Scutellaria baicalensis. Plant Cell Tissue Organ Cult 70:289–293

    CAS  Google Scholar 

  • Greplova M, Polzerova H, Domkarova J (2009) Intra- and inter-spcific crosses of Solanum materials after mitotic polyploidization in vitro. Plant Breed 128:651–657

    Google Scholar 

  • Grzebelus E, Adamus A (2004) Effect of anti-mitotic agents on development and genome doubling of gynogenic onion (Allium cepa L.) embryos. Plant Sci 167:569–574

    CAS  Google Scholar 

  • Gu XF, Yang AF, Meng H, Zhang JR (2005) In vitro induction of tetraploid plants from diploid Zizyphus jujuba Mill. Cv. Zhanhua. Plant Cell Rep 24:671–676

    CAS  PubMed  Google Scholar 

  • Halfmann R, Stelly D, Young D (2007) Towards improved cell cycle synchronization and chromosome preparation methods in cotton. J Cotton Sci 11:60–67

    CAS  Google Scholar 

  • Hamill S, Smith M, Dodd W (1992) In vitro induction of banana autotetraploids by colchicine treatment of micropropagated diploids. Aust J Bot 40:887–896

    CAS  Google Scholar 

  • Hansen N, Andersen S (1996) In vitro chromosome doubling potential of colchicine, oryzalin, trifluralin and APM in Brassica napus microspore culture. Euphytica 88:159–164

    CAS  Google Scholar 

  • Hansen AL, Gertz A, Joersbo M, Andersen SB (1998) Antimicrotubule herbicides for in vitro chromosome doubling in Beta vulgaris L. ovule culture. Euphytica 101:231–237

    CAS  Google Scholar 

  • Hegarty MJ, Hiscock SJ (2008) Genomic clues to the evolutionary success of polyploid plants. Curr Biol 18:R435–R444

    CAS  PubMed  Google Scholar 

  • Henny RJ, Holm JR, Chen JJ, Scheiber M (2009) In vitro induction of tetraploids in Dieffenbachia ×  ‘Star Bright M-1’ by colchicine. Hortscience 44(3):646–650

    Google Scholar 

  • Hess D, Bayer D (1974) The effect of trifluralin on the ultrastructure of dividing cells of the root meristem of cotton (Gossypium hirsutum L. ‘Acala 4-42’). J Cell Sci 15:429–441

    CAS  PubMed  Google Scholar 

  • Hodgson JG, Sharafi M, Jalili A, Díaz S, Montserrat-Martí G, Palmer C, Cerabolini B, Pierce S, Hamzehee B, Asri Y, Jamzad Z, Wilson P, Raven JA, Band SR, Basconcelo S, Bogard A, Carter G, Charles M, Castro-Díez P, Cornelissen JHC, Funes G, Jones G, Khoshnevis M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Boustani S, Dehghan M, Guerrero-Campo J, Hynd A, Kowsary E, Kazemi-Saeed F, Siavash B, Villar-Salvador P, Craigie R, Naqinezhad A, Romo-Díez A, de Torres Espuny L, Simmons E (2010) Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog? Ann Bot 105:573–584

    CAS  PubMed  Google Scholar 

  • Hugdahl JD, Morejohn LC (1993) Rapid and reversible high-affinity binding of the dinitroaniline herbicide oryzalin to tubulin from Zea mays L. Plant Physiol 102:725–740

    CAS  PubMed  Google Scholar 

  • Isshiki A, Taura T (2003) Fertility restoration of hybrids between Solanum melongena L. and S. aethiopicum L. Gilo group by chromosome doubling and cytoplasmic effect on pollen fertility. Euphytica 134:195–201

    Google Scholar 

  • Jelenic S, Berljak J, Papes D, Jelaska S (2001) Mixoploidy and chimeric structures in somaclones of potato (Solanum tuberosum L.) cv. Bintje. Food Technol Biotechnol 39:13–17

    Google Scholar 

  • Juhasz AG, Venczel G, Sagi Z, Kristof Z, Vagi P, Gajdos L, Zatyko L (2006) Production of doubled haploid breeding lines in case of paprika, spice paprika, eggplant, cucumber, zucchini and onion. Acta Hort 725:845–853

    CAS  Google Scholar 

  • Kadota M, Niimi Y (2002) In vitro induction of tetraploid plants from a diploid Japanese pear cultivar (Pyrus pyrifolia N. cv. Hosui). Plant Cell Rep 21:282–286

    CAS  Google Scholar 

  • Karle R, Parks CA, O’Leary MC, Boyle TH (2002) Polyploidy-induced changes in the breeding behavior of Hatiora × graeseri (Cactaceae). J Am Soc Hortic Sci 127:397–403

    Google Scholar 

  • Kehr A (1996) Woody plant polyploidy. Am Nurseryman 183:38–47

    Google Scholar 

  • Kermani MJ, Sarasan V, Roberts AV, Yokoya K, Wentworth J, Sieber VK (2003) Oryzalin-induced chromosome doubling in Rosa and its effect on plant morphology and pollen viability. Theor Appl Genet 107:1195–1200

    CAS  PubMed  Google Scholar 

  • Khosravi P, Kermani MJ, Nematzadeh GA, Bihamta MR, Yokoya K (2008) Role of mitotic inhibitors and genotype on chromosome doubling of Rosa. Euphytica 160:267–275

    CAS  Google Scholar 

  • Kim KM, Baenziger PS (2005) A simple wheat haploid and doubled haploid production system using anther culture. In Vitro Cell Dev Biol-Plant 41:22–27

    Google Scholar 

  • Kitamura S, Akutsu M, Okazaki K (2009) Mechanism of action of nitrous oxide gas applied as a polyploidizing agent during meiosis in lilies. Sex Plant Reprod 22:9–14

    CAS  PubMed  Google Scholar 

  • Kopecky D, Lukaszewski AJ, Gibeault V (2005) Reduction of ploidy level by androgenesis in intergeneric Lolium-Festuca hybrids for turf grass breeding. Crop Sci 45:274–281

    Google Scholar 

  • Leus L, Van Laere K, Dewitte A, Van Huylenbroeck J (2009) Flow cytometry for plant breeding. Acta Hort 836:221–226

    Google Scholar 

  • Lewis D (1947) Competition and dominance of incompatibility alleles in diploid pollen. Heredity 1:85–108

    Google Scholar 

  • Li WL, Berlyn GP, Ashton PS (1996) Polyploids and their structural and physiological characteristics relative to water deficiet in Betula papyrifera (Betulaceae). Am J Bot 83:15–20

    Google Scholar 

  • Li WD, Biswas DK, Xu H, Xu CQ, Wang XZ, Liu JK, Jiang GM (2009) Photosynthetic responses to chromosome doubling in relation to leaf anatomy in Lonicera japonica subjected to water stress. Funct Plant Biol 36:783–792

    CAS  Google Scholar 

  • Lim KB, Ramanna MS, van Tuyl JM (2001) Comparison of homoeologous recombination frequency between mitotic and meiotic polyploidisation in BC1 progeny of interspecific Lily hybrids. Acta Hort 552:65–72

    Google Scholar 

  • Liu G, Li Z, Bao M (2007) Colchicine-induced chromosome doubling in Platanus acerifolia and its effect on plant morphology. Euphytica 157:145–154

    Google Scholar 

  • Lu C, Bridgen MP (1997) Chromosome doubling and fertility study of Alstroemeria aurea × A. caryophyllaea. Euphytica 94:75–81

    Google Scholar 

  • Luckett D (1989) Colchicine mutagenesis is associated with substantial heritable variation in cotton. Euphytica 42:177–182

    CAS  Google Scholar 

  • Mable BK (2004) Polyploidy and self-incompatibility: is there an association? New Phytol 162:803–811

    Google Scholar 

  • Mears JA (1980) Chemistry of polyploids: a summary with comments on Parthenium (Asteraceae-Ambrosiinae). In: Lewis WH (ed) Polyploidy: biological relevance, vol 13. Plenum Press, New York, pp 77–102

    Google Scholar 

  • Meyer EM, Touchell DH, Ranney TG (2009) In vitro shoot regeneration and polyploid induction from leaves of Hypericum species. Hortscience 44(7):1957–1961

    Google Scholar 

  • Mitrofanova I, Zilbervarg I, Yemets A, Mitrofanova O, Blume Y (2003) The effect of dinitroaniline and phosphorothioamidate herbicides on polyploidisation in vitro of Nepeta plants. Cell Biol Int 27:229–231

    CAS  PubMed  Google Scholar 

  • Molin W, Khan R (1997) Mitotic disruptor herbicides: recent advances and opportunities. In: Roe R (ed) Herbicide activity: toxicology, biochemistry and molecular biology. IOS Press, Burke, pp 143–158

    Google Scholar 

  • Morejohn L, Fosket D (1991) The biochemistry of compounds with anti-microtubule activity in plant cells. Pharmacol Therapeut 51:217–230

    CAS  Google Scholar 

  • Morejohn LC, Bureau TE, Tocchi LP, Fosket DE (1984) Tubulins from different higher-plant species are immunologically nonidentical and bind colchicine differentially. Proc Natl Acad Sci USA 81:1440–1444

    CAS  PubMed  Google Scholar 

  • Morejohn LC, Bureau TE, Molebajer J, Bajer AS, Fosket DE (1987) Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in vitro. Planta 172:252–264

    CAS  Google Scholar 

  • Murashige T, Nakano R (1966) Tissue culture as a potential tool in obtaining polyploid plants. J Hered 57:114–118

    Google Scholar 

  • Nikolova V, Niemirowicz-Szczytt K (1996) Diploidization of cucumber (Cucumis sativus L.) haploids by colchicine treatment. Acta Soc Bot Pol 65:311–317

    CAS  Google Scholar 

  • Nimura M, Kato J, Horaguchi H, Mii M, Sakai K, Katoh T (2006) Induction of fertile amphidiploids by artificial chromosome-doubling in interspecific hybrid between Dianthus caryophyllus L. and D. japonicus Thunb. Breed Sci 56:303–310

    Google Scholar 

  • Notsuka K, Tsuru T, Shiraishi M (2000) Induced polyploid grapes via in vitro chromosome doubling. J Jpn Soc Hortic Sci 69:543–551

    CAS  Google Scholar 

  • Omran SA, Guerra-Sanz JM, Cardenas JAG (2008) Methodology of tetraploid induction and expression of microsatellite alleles in triploid watermelon. In: Proceedings IXth Eucarpia meeting on genetics and breeding of Cucurbitaceae, pp 381–384

  • Osborn TC, Pires JC, Birchler JA, Auger DL, Chen ZJ, Lee HS, Comai L, Madlung A, Doerge RW, Colot V, Martienssen RA (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19:141–147

    CAS  PubMed  Google Scholar 

  • Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462

    CAS  PubMed  Google Scholar 

  • Paden DW, Meyer MM, Rayburn AL (1990) Doubling chromosomes with colchicine treatment in vitro as determined by chloroplast number in epidermal guard cells. J Am Rhododendron Soc 44:162–167

    Google Scholar 

  • Pandey KK (1968) Colchicine-induced changes in the self-incompatibility behaviour of Nicotiana. Genetica 39:257–271

    Google Scholar 

  • Parisod C, Holderegger R, Brochmann C (2010) Evolutionary consequences of autopolyploidy. New Phytol 186:5–17

    CAS  PubMed  Google Scholar 

  • Pasakinskiené I (2000) Culture of embryos and shoot tips for chromosome doubling in Lolium perenne and sterile hybrids between Lolium and Festuca. Plant Breed 119:185–187

    Google Scholar 

  • Pei XS (1985) Polyploidy induction and breeding. Shangai Science and Technology Press, Shanghai, pp 95–98

    Google Scholar 

  • Petersen KK, Hagberg P, Kristiansen K (2002) In vitro chromosome doubling of Miscanthus sinensis. Plant Breed 121:445–450

    Google Scholar 

  • Petersen KK, Hagberg P, Kristiansen K (2003) Colchicine and oryzalin mediated chromosome doubling in different genotypes of Miscanthus sinensis. Plant Cell Tissue Organ Cult 73:137–146

    Google Scholar 

  • Planchais S, Glab N, Inzé D, Bergounioux C (2000) Chemical inhibitors: a tool for plant cell cycle studies. FEBS Lett 476:78–83

    CAS  PubMed  Google Scholar 

  • Pustovoitova TN, Eremin GV, Rassvetaeva EG, Zhdanova NE, Zholkevich VN (1996) Drought resistance, recovery capacity, and phytohormone content in polyploid plum meaves. Russ J Plant Physiol 43:232–235

    CAS  Google Scholar 

  • Quesenberry KH, Dampier JM, Lee YY, Smith RL, Acuna CA (2010) Doubling the chromosome number of bahiagrass via tissue culture. Euphytica online first doi:10.1007/s10681-010-0165-4

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploidy formation in flowering plants. Annu Rev Ecol Syst 29:467–501

    Google Scholar 

  • Ramulu K, Verhoeven H, Dijkhuis P (1991) Mitotic blocking, micronucleation, and chromosome doubling by oryzalin, amiprophosmethyl, and colchicine in potato. Protoplasma 160:65–71

    CAS  Google Scholar 

  • Ranney TG (2006) Polyploidy: from evolution to new plant development. Proc Int Plant Propagators Soc 56:137–142

    Google Scholar 

  • Rey H, Sansberro B, Collavino M, Davina J, Gonzalez A, Mroginski L (2002) Colchicine, trifluralin and oryzalin promoted development of somatic embryos in Ilex paraguariensis (Aquifoliaceae). Euphytica 123:49–56

    CAS  Google Scholar 

  • Riddle NC, Kato A, Birchler JA (2006) Genetic variation for the response to ploidy change in Zea mays L. Theor Appl Genet 114:101–111

    PubMed  Google Scholar 

  • Roberts AV (2007) The use of bead beating to prepare suspensions of nuclei for flow cytometry from fresh leaves, herbarium leaves, petals and pollen. Cytom Part A 71:1039–1044

    Google Scholar 

  • Roberts A, Lloyd D, Short K (1990) In vitro procedures for the induction of tetraploidy in a diploid rose. Euphytica 49:33–38

    Google Scholar 

  • Rose JB, Kubba J, Tobutt KR (2000a) Induction of tetraploidy in Buddleia globosa. Plant Cell Tissue Organ Cult 63:121–125

    Google Scholar 

  • Rose JB, Kubba J, Tobutt KR (2000b) Chromosome doubling in sterile Syringa vulgaris × S. pinnatifolia hybrids by in vitro culture of nodal explants. Plant Cell Tissue Organ Cult 63:127–132

    Google Scholar 

  • Roux N, Dolezel J, Swennen R, Zapata-Arias FJ (2001) Effectiveness of three micropropagation techniques to dissociate cytochimeras in Musa spp. Plant Cell Tissue Organ Cult 66:189–197

    Google Scholar 

  • Roy A, Leggett G, Koutoulis A (2001) In vitro tetraploid induction and generation of tetraploids from mixoploids in hop (Humulus lupulus L.). Plant Cell Rep 20:489–495

    CAS  Google Scholar 

  • Rubuluza T, Nikolova RV, Smith MT, Hannweg K (2007) In vitro induction of tetraploids in Colophospermum mopane by colchicine. S Afr J Bot 73:259–261

    Google Scholar 

  • Shao J, Chen C, Deng X (2003) In vitro induction of tetraploid in pomegranate (Punica granatum). Plant Cell Tissue Organ Cult 75:241–246

    CAS  Google Scholar 

  • Shiga I, Uno Y, Kanechi M, Inagaki N (2009) Identification of polyploidy of in vitro anther-derived shoots of Asparagus officinalis L. by flow cytometric analysis and measurement of stomatal length. J Jpn Soc Hortic Sci 78(1):103–108

    Google Scholar 

  • Shmuck A (1938) The chemical nature of substances inducing polyploidy on plants. Compt Rend Acad Sci URSS 19:189–192

    Google Scholar 

  • Smith KF, McFarlane NM, Croft VM, Trigg PJ, Kearney GA (2003) The effects of ploidy and seed mass on the emergence and early vigour of perennial ryegrass (Lolium perenne L.) cultivars. Aust J Exp Agr 43:481–486

    Google Scholar 

  • Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci USA 97:7051–7057

    CAS  PubMed  Google Scholar 

  • Song P, Kong W, Peffley EB (1997) Chromosome doubling of Allium fistulosum × A. cepa interspecific F1 hybrids through colchicine treatment of regenerating callus. Euphytica 93:257–262

    Google Scholar 

  • Stanys V, Weckman A, Staniene G, Duchovskis P (2006) In vitro induction of polyploidy in japanese quince (Chaenomeles japonica). Plant Cell Tissue Organ Cult 84:263–268

    CAS  Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Stebbins GL (1971) Chromosome evolution in higher plants. Edward Arnold, London

    Google Scholar 

  • Stout AB, Chandler C (1942) Hereditary transmission of induced tetraploidy and compatibility in fertilisation. Science 96:257–258

    CAS  PubMed  Google Scholar 

  • Subrahmanyam N, Kasha K (1975) Chromosome doubling of barley haploids by nitrous oxide and colchicine treatments. Can J Genet Cytol 17:573–583

    CAS  Google Scholar 

  • Sugiyana S (2005) Polyploidy and cellular mechanisms changing leaf size: comparision of diploid and autotetraploid populations in two species of Lolium. Ann Bot 96:931–938

    Google Scholar 

  • Sun QR, Sun HS, Li LG, Bell RL (2009) In vitro colchicine-induced polyploid plantlet production and regeneration from leaf explants of the diploid pear (Pyrus communis L.) cultivar ‘Fertility’. J Hortic Sci Biotech 84(5):548–552

    CAS  Google Scholar 

  • Suzuki K, Takatsu Y, Gonai T, Kasumi M (2005) Plant regeneration and chromosome doubling of wild Gladiolus species. Acta Hortic 673:175–181

    CAS  Google Scholar 

  • Takamura T, Miyajima I (1996) Colchicine induced tetraploids in yellow-flowered cyclamens and their characteristics. Sci Hortic 65:305–312

    CAS  Google Scholar 

  • Takamura T, Lim KB, van Tuyl JM (2002) Effect of a new compound on the mitotic polyploidisation of Lilium longiflorum and Oriental hybrid lilies. Acta Hort 572:37–40

    CAS  Google Scholar 

  • Tal M (1980) Physiology of polyploids. In: Lewis WH (ed) Polyploidy: biological relevance, vol 13. Plenum Press, New York, pp 61–76

    Google Scholar 

  • Taylor N, Anderson M, Wuesenberry K, Watson L (1976) Doubling the chromosome number of Trifolium species using nitrous oxide. Crop Sci 16:516–518

    CAS  Google Scholar 

  • Teng E, Leonhardt K (2009) In vitro and in vivo polyploidization of Dracaena with oryzalin. Acta Hort 813:509–516

    Google Scholar 

  • Thao N, Ureshino K, Miyajima I, Ozaki Y, Okubo H (2003) Induction of tetraploids in ornamental Alocasia through colchicine and oryzalin treatments. Plant Cell Tissue Organ Cult 72:19–25

    CAS  Google Scholar 

  • Thomas H (1993) Chromosome manipulation and polyploidy. In: Hayward MD, Bosemark NO, Romagosa I (eds) Plant breeding: principles and prospects. Chapmann and Hall, London, pp 79–92

    Google Scholar 

  • Väinölä A (2000) Polyploidization and early screening of Rhododendron hybrids. Euphytica 112:239–244

    Google Scholar 

  • Vaïnölä A, Repo T (2001) Polyploidisation of Rhododendron cultivars in vitro and how it affects cold hardiness. Acta Hort 560:319–322

    Google Scholar 

  • Van Duren M, Morpugo R, Dolezel J, Afza R (1996) Induction and verification of autotetraploids in diploid banana (Musa acuminata) by in vitro techniques. Euphytica 88:25–34

    Google Scholar 

  • Van Laere K (2008) Interspecific hybridisation in woody ornamentals. PhD thesis, Faculty of Bioscience Engineering, Ghent University

  • Van Laere K, Van Huylenbroeck J, Van Bockstaele E (2006) Breeding strategies to increase genetic variability in Hibiscus syriacus. Acta Hort 714:75–81

    Google Scholar 

  • Van Tuyl JM, Van Holsteijn HCM (1996) Lily breeding research in the Netherlands. Acta Hort 414:35–45

    Google Scholar 

  • Van Tuyl J, Meijer H, Van Diën M (1992) The use of oryzalin as an alternative for colchicine in vitro chromosome doubling of Lilium and Nerine. Acta Hort 325:625–630

    Google Scholar 

  • Vanstechelman I, Eeckhaut T, Van Huylenbroeck J, Van Labeke M (2010) Histogenic analysis of chemically induced mixoploids in Spathiphyllum wallisii. Euphytica 174:61–72

    Google Scholar 

  • Vaughn K (2000) Anticytoskeletal herbicides. In: Nick P (ed) Plant microtubules, potential for biotechnology. Springer, Berlin, pp 193–205

    Google Scholar 

  • Verhoeven H, Ramulu K, Dijkhuis P (1990) A comparison of the effects of various spindle toxins on metaphase arrest and formation of micronuclei in cell-suspension cultures of Nicotiana plumbaginifolia. Planta 182:408–414

    CAS  Google Scholar 

  • Viehmannova I, Fernandez E, Bechyne M, Vyvadilova M, Greplova M (2009) In vitro induction of polyploidy in yacon (Smallanthus sonchifolius). Plant Cell Tissue Organ Cult 95:21–25

    Google Scholar 

  • Wu JH, Mooney P (2002) Autotetraploid tangor plant regeneration form in vitro citrus somatic embryogenic callus treated with colchicine. Plant Cell Tissue Organ Cult 70:99–104

    CAS  Google Scholar 

  • Xiong YC, Li FM, Zhang T (2006) Performance of wheat crops with different chromosome ploidy: root-sourced signals, drought tolerance, and yield performance. Planta 224:710–718

    CAS  PubMed  Google Scholar 

  • Yamaguchi M (1989) Basic studies on the flower color breeding of carnations (Dianthus caryophyllus L.). Bull Fac Hort Miamikyusyu Univ 19:1–79

    Google Scholar 

  • Yang X, Cao Z, An L, Wang Y, Fang X (2006) In vitro tetraploid induction via colchicine treatment from diploid somatic embryos in grapevine (Vitis vinifera L.). Euphytica 152:217–224

    Google Scholar 

  • Yetisir H, Sari N (2003) A new method for haploid muskmelon (Cucumis melo L.) dihaploidization. Sci Hortic 98:277–283

    Google Scholar 

  • Young D, Lewandowski V (2000) Covalent binding of the benzamide RH-4032 to tubulin in suspension-cultured tobacco cells and its application in a cell-based competitive-binding assay. Plant Physiol 124:115–124

    CAS  PubMed  Google Scholar 

  • Young D, Tice C, Michelotti E, Roemelle R, Slawecki R, Rubio F, Rolling J (2001) Structure-activity relationships of phenylcyclohexene and biphenyl antitubulin compounds against plant and mammalian cells. Bioorg Med Chem Lett 11:1393–1396

    CAS  PubMed  Google Scholar 

  • Zhang J, Zhang M, Deng X (2007) Obtaining autotetraploids in vitro at a high frequency in Citrus sinensis. Plant Cell Tissue Organ Cult 89:211–216

    Google Scholar 

  • Zhang Z, Dai H, Xiao M, Liu X (2008) In vitro induction of tetraploids in Phlox subulata L. Euphytica 159:59–65

    Google Scholar 

  • Zhang QY, Luo FX, Liu L, Guo FC (2010a) In vitro induction of tetraploids in crape myrtle (Lagerstroemia indica L.). Plant Cell Tissue Organ Cult 101:41–47

    CAS  Google Scholar 

  • Zhang XY, Hu CG, Yao JL (2010b) Tetraploidization of diploid Dioscorea results in activation of the antioxidant defense system and increased heat tolerance. J Plant Physiol 167:88–94

    CAS  PubMed  Google Scholar 

  • Zlesak D, Thill C, Anderson N (2005) Trifluralin-mediated polyploidization of Rosa chinensis minima (Sims) Voss. Euphytica 141:281–290

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Dhooghe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhooghe, E., Van Laere, K., Eeckhaut, T. et al. Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tiss Organ Cult 104, 359–373 (2011). https://doi.org/10.1007/s11240-010-9786-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9786-5

Keywords

Navigation