Skip to main content
Log in

Image-based analysis of cell-specific productivity for plant cell suspension cultures

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

More and more plant cell suspension cultures are regarded as an attractive alternative to mammalian cells as host organism for production of complex recombinant proteins. The most important advantages of the production platform are low costs, easy scalability and enhanced safety by complete lack of animal components in the cultivation media. In order to characterize, understand and control such systems accurately, it is important to determine the cell-specific productivity (Qp) of plant cell-based production platforms. Compared to many microbial and mammalian cells the morphology of plant cells is nonhomogeneous and the cells tend to form aggregates, therefore commercial cell counting systems are too unreliable to determine cell numbers in plant suspension cultures. We addressed this limitation by developing a novel cell counting method based on a combination of cell-staining and automated confocal fluorescence microscopy. This method allowed us, for the first time, to determine the cell-specific productivity of transgenic tobacco (Nicotiana tabacum cv. Bright Yellow-2) cell suspension cultures producing the human antibody M12. In the future this method will be a useful tool in the development of optimized plant cell-based production processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • An GH (1985) High-efficiency transformation of cultured tobacco cells. Plant Physiol 79(2):568–570. doi:10.1104/Pp.79.2.568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boehm R (2007) Bioproduction of therapeutic proteins in the 21st century and the role of plants and plant cells as production platforms. Ann NY Acad Sci 1102:121–134. doi:10.1196/annals.1408.009

    Article  CAS  PubMed  Google Scholar 

  • Chartrain M, Chu L (2008) Development and production of commercial therapeutic monoclonal antibodies in Mammalian cell expression systems: an overview of the current upstream technologies. Curr Pharm Biotechnol 9(6):447–467

    Article  CAS  PubMed  Google Scholar 

  • de Gunst MCM, Harkes PAA, Val J, van Zwet WR, Libbenga KR (1990) Modelling the growth of a batch culture of plant cells: a corpuscular approach. Enzyme Microb Tech 12(1):61–71. doi:10.1016/0141-0229(90)90182-P

    Article  Google Scholar 

  • Fischer R, Stoger E, Schillberg S, Christou P, Twyman RM (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7(2):152–158. doi:10.1016/j.pbi.2004.01.007

    Article  CAS  PubMed  Google Scholar 

  • Holland T, Sack M, Rademacher T, Schmale K, Altmann F, Stadlmann J, Fischer R, Hellwig S (2010) Optimal nitrogen supply as a key to increased and sustained production of a monoclonal full-size antibody in BY-2 suspension culture. Biotechnol Bioeng 107(2):278–289

    Article  CAS  PubMed  Google Scholar 

  • Holland T, Blessing D, Hellwig S, Sack M (2013) The in-line measurement of plant cell biomass using radio frequency impedance spectroscopy as a component of process analytical technology. Biotechnol J 8(10):1231–1240. doi:10.1002/biot.201300125

    CAS  PubMed  Google Scholar 

  • Jeffers P, Raposo S, Lima-Costa ME, Connolly P, Glennon B, Kieran PM (2003) Focussed beam reflectance measurement (FBRM) monitoring of particle size and morphology in suspension cultures of Morinda citrifolia and Centaurea calcitrapa. Biotechnol Lett 25(23):2023–2028

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Huang Y, Sharfstein ST (2006) Regulation of recombinant monoclonal antibody production in Chinese hamster ovary cells: a comparative study of gene copy number, mRNA level, and protein expression. Biotechnol Progr 22(1):313–318. doi:10.1021/Bp0501524

    Article  CAS  Google Scholar 

  • Kieran PM (2001) Bioreactor design for plant cell suspension cultures. In: Cabral JMS, Mota M, Tramper J (eds) Multiphase bioreactor design. Taylor & Francis, London, pp 391–426

    Google Scholar 

  • Kirchhoff J (2012) Generation of highly productive polyclonal and monoclonal tobacco suspension lines from a heterogeneous transgenic BY-2 culture through flow cytometric sorting. Dissertation, RWTH Aachen University

  • Kirchhoff J, Raven N, Boes A, Roberts JL, Russell S, Treffenfeldt W, Fischer R, Schinkel H, Schiermeyer A, Schillberg S (2012) Monoclonal tobacco cell lines with enhanced recombinant protein yields can be generated from heterogeneous cell suspension cultures by flow sorting. Plant Biotechnol J 10(8):936–944. doi:10.1111/j.1467-7652.2012.00722.x

    Article  CAS  PubMed  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Molec Gen Genet 204(3):383–396. doi:10.1007/bf00331014

    Article  CAS  Google Scholar 

  • Lamboursain L, Jolicoeur M (2005) Determination of cell concentration in a plant cell suspension using a fluorescence microplate reader. Plant Cell Rep 23(10–11):665–672. doi:10.1007/s00299-004-0899-3

    Article  CAS  PubMed  Google Scholar 

  • McDonald KA, Jackman AP, Hurst S (2001) Characterization of plant suspension cultures using the focused beam reflectance technique. Biotechnol Lett 23(4):317–324. doi:10.1023/A:1005646826204

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15(3):473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell-line as the Hela-cell in the cell biology of higher-plants. Int Rev Cytol 132:1–30

    Article  CAS  Google Scholar 

  • Naill MC, Roberts SC (2004) Preparation of single cells from aggregated Taxus suspension cultures for population analysis. Biotechnol Bioeng 86(7):817–826. doi:10.1002/Bit.20083

    Article  CAS  PubMed  Google Scholar 

  • Nicoloso FT, Val J, Vanderkeur M, Vaniren F, Kijne JW (1994) Flow-cytometric cell counting and DNA estimation for the study of plant-cell population-dynamics. Plant Cell Tiss Org 39(3):251–259. doi:10.1007/Bf00035978

    Article  CAS  Google Scholar 

  • Raven N, Schillberg S, Kirchhoff J, Brändli J, Imseng N, Eibl R (2010) Growth of BY-2 suspension cells and plantibody production in single-use bioreactors. In: Single-use technology in biopharmaceutical manufacture. Wiley, New York, pp 251–261. doi:10.1002/9780470909997.ch21

  • Schillberg S, Raven N, Fischer R, Twyman RM, Schiermeyer A (2013) Molecular farming of pharmaceutical proteins using plant suspension cell and tissue cultures. Curr Pharm Des 19(31):5531–5542

    Article  CAS  PubMed  Google Scholar 

  • Tucker KG, Chalder S, al-Rubeai M, Thomas CR (1994) Measurement of hybridoma cell number, viability, and morphology using fully automated image analysis. Enzyme Microb Technol 16(1):29–35

    Article  CAS  PubMed  Google Scholar 

  • Ullisch DA, Muller CA, Maibaum S, Kirchhoff J, Schiermeyer A, Schillberg S, Roberts JL, Treffenfeldt W, Buchs J (2012) Comprehensive characterization of two different Nicotiana tabacum cell lines leads to doubled GFP and HA protein production by media optimization. J Biosci Bioeng 113(2):242–248. doi:10.1016/j.jbiosc.2011.09.022

    Article  CAS  PubMed  Google Scholar 

  • van Dussen L, Zimran A, Akkerman EM, Aerts JM, Petakov M, Elstein D, Rosenbaum H, Aviezer D, Brill-Almon E, Chertkoff R, Maas M, Hollak CE (2013) Taliglucerase alfa leads to favorable bone marrow responses in patients with type I Gaucher disease. Blood Cells Mol Dis 50(3):206–211. doi:10.1016/j.bcmd.2012.11.001

    Article  PubMed  Google Scholar 

  • Vasilev N, Grömping U, Lipperts A, Raven N, Fischer R, Schillberg S (2013) Optimization of BY-2 cell suspension culture medium for the production of a human antibody using a combination of fractional factorial designs and the response surface method. Plant Biotechnol J 11(7):867–874. doi:10.1111/pbi.12079

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Ge X, Dolan MC (2011) Towards high-yield production of pharmaceutical proteins with plant cell suspension cultures. Biotechnol Adv 29(3):278–299. doi:10.1016/j.biotechadv.2011.01.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Flora Schuster for her skilled technical assistance with the preparation of plant cell cultures and Dr. Richard M Twyman and Holger Spiegel for critical reading of the manuscript. This research was funded by the European Union Seventh Framework Programme under Grant Agreement No. 227420 CoMoFarm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Schillberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Havenith, H., Raven, N., Di Fiore, S. et al. Image-based analysis of cell-specific productivity for plant cell suspension cultures. Plant Cell Tiss Organ Cult 117, 393–399 (2014). https://doi.org/10.1007/s11240-014-0448-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0448-x

Keywords

Navigation