Skip to main content
Log in

Gametic embryogenesis and callogenesis in Isolated microspore culture of Jatropha curcas L. a recalcitrant bioenergy crop

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Jatropha curcas is an undomesticated crop and its plantations did not meet commercial expectation due to absence of high yielding commercial line with desired agronomic characters. Earlier, breeding efforts did not pay much attention on yield and disease improving traits due to lack of desired genetic variability. Isolated microspore culture is one of the most widely used in vitro techniques to induce gametic embryogenesis with wide degree of genetic variability for the development of haploids and doubled haploids. In this study, an efficient isolated microspore culture system was established for different genotypes with the optimization of various factors that affect microspore embryogenesis. After 15–20 days of culture at 25 °C, tetrads, mid, early un-vacuolated and vacuolated late stage uninucleate microspores, which were preincubated at 4 °C for 7 days under shaking conditions, induced the formation of embryo like structures (ELSs) in a modified MS medium with 2.0 mg/l, 2,4-d, 0.1 mg/l kinetin, 300 mg/l casein hydrolysate, 1 g/l glutamine, 0.5 mg/l folic acid, 0.05 mg/l biotin and 5% sucrose. It is observed that the shock at 4 °C for 7 days, subsequently incubation of microspore cultures at 25 °C for 15 days and then at 15 °C for 10 days played a significant role in induction and accelerated creation of ELSs in three different genotypes. Microscopic analyses confirmed the different developmental stages of microspore embryogenesis including cell division and multicellular embryo like structures. Additionally, flow cytometric analyses verified the calli and ELSs were haploids in nature and strengthened that the origin was from microspores. This study supports the evidence of gametic embryogenesis in Jatropha microspore culture.

Key message

Development of haploid and doubled haploids in Jatropha Microspore culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MS:

Murashige and Skoog

DH:

Doubled haploids

Kn:

Kinetin

BAP:

6-Benzyl amino purine

2,4-d :

2,4-Dichlorophenoxyacetic acid

SEM:

Scanning electron microscopy

OM:

Optical microscopy

TEM:

Transmission electron microscopy

ELSs:

Embryo like structures

References

  • Blasco M, Badenes ML, Naval M (2015) Embryogenic response from anther culture of cultivars of loquat (Eriobotryajaponica (Thunb.) Lindl.) from different origins. Euphytica 205:337–348. https://doi.org/10.1007/s10681-015-1386-3

    Article  Google Scholar 

  • Brew-Appiah RA, Ankrah N, Liu W, Konzak CF, Von Wettstein D, Rustgi S (2013) Generation of doubled haploid transgenic wheat lines by microspore transformation. PLoS ONE 8(11):1–13

    Article  CAS  Google Scholar 

  • Britt AB, Kuppu S (2016) Cenh3: an emerging player in haploid induction technology. Front Plant Sci 7(357):1–10. https://doi.org/10.3389/fpls.2016.00357

    Article  Google Scholar 

  • Bueno MA, Pintos B, Martin A (2006) Induction of embryogenesis via isolated microspore culture in Oleaeuropaea L. Olivebioteq 1:9–25

    Google Scholar 

  • Bueno MA, Pintos B, Hofer M, Martin A (2005) Pro-embryos induction from Oleaeuropaea L. isolated microspore culture. Acta Physiol Plant 27:695–701

    Article  Google Scholar 

  • Chaubey P, Singh NP, Chetri SK, Heikrujam M, Agrawal V (2013) Effective micropropagation protocol in Jatropha curcas L. an important biodiesel plant and establishment of ISSR based genetic fidelity among the regenerants. Phytomorphology 63:33–44

    Google Scholar 

  • Cheng Y, Ma R, Jiao Y, Qiao N, Li T (2013) Impact of genotype, plant growth regulators and activated charcoal on embryogenesis induction in microspore of pepper (Capsicum annuum L.). S Afr J Bot 88:306–309

    Article  CAS  Google Scholar 

  • Chiancone B, Karasawa MM, Gianguzzi V (2015) Early embryo achievement through isolated microspore culture in Citrus clementina Hort. ex Tan., cvs. “Monreal Rosso” and “Nules.” Front Plant Sci 6:413

    Article  PubMed  PubMed Central  Google Scholar 

  • Currais LM, Canhoto JM, Linde PVD (2012) Microsporogenesis in Jatropha curcas L. Acta Hortic 935:113–120

    Article  Google Scholar 

  • Debnath M, Bisen PS (2008) Jatropha Curcas L., a multipurpose stress resistant plant with a potential for ethnomedicine and renewable energy. Curr Pharm Biotechnol 9:288–306

    Article  CAS  PubMed  Google Scholar 

  • Dolezel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244

    Article  CAS  PubMed  Google Scholar 

  • Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol J 8:377–424

    Article  CAS  PubMed  Google Scholar 

  • Dunwell JM, Wilkinson MJ, Nelson S (2010) Production of haploids and doubled haploids in oil palm. BMC Plant Biol 10:218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Folling L, Olesen A (2002) Transformation of wheat (Triticum aestivum L.) microspore derived callus and microspores by particle bombardment. Plant Cell Rep 20:629–636

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirement suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Germana MA (2006) Doubled haploid production in fruit crops. Plant Cell Tissue Organ Cult 86:131–145

    Article  Google Scholar 

  • Germana MA (2007) Haploidy. In: Khan I (ed) Citrus, genetics, breeding and biotechnology. CABI, Wallingford, pp 167–196

    Chapter  Google Scholar 

  • Germana MA (2009) Haploid and doubled haploids in fruit trees. In: Touraev A, Forster B, Jain M (eds) Advances in haploid production in higher plants. Springer, Dordrecht, pp 241–263

    Chapter  Google Scholar 

  • Germana MA (2010) Anther culture for haploid and doubled haploid production. Plant Cell Tissue Organ Cult 104:283–300

    Article  Google Scholar 

  • Germana MA (2011) Gametic embryogenic and haploid technology as valuable support to plant breeding. Plant Cell Rep 30:839–857

    Article  CAS  PubMed  Google Scholar 

  • Gilbert N (2011) The seeds of an economy. Nature 474:S18–S19

    Article  CAS  PubMed  Google Scholar 

  • Gu K, Mao H, Yin Z (2014) Production of marker-free transgenic Jatropha curcas expressing hybrid Bacillus thuringiensis δ-endotoxin Cry1 Ab/1Ac for resistance to larvae of tortrix moth (Archips micaceanus). Biotechnol Biofuels 7:68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hassan AKMS, Begum N, Bari LS, Jahan MAA (2014) In vitro shoot multiplication of the biodiesel plant Jatropha curcas L. through direct organogenesis. Bangladesh J Sci Ind Res 49(1):41–46

    Article  CAS  Google Scholar 

  • Hofer M (2004) In vitro androgenesis in apple-improvement of the induction phase. Plant Cell Rep 22:365–370

    Article  CAS  PubMed  Google Scholar 

  • Hofer M, Touraev A, Heberle-Bors E (1999) Induction of embryogenesis from isolated apple microspores. Plant Cell Rep 18:1012–1017

    Article  CAS  Google Scholar 

  • Jalali S, Kancharla N, Yepuri V, Arockiasamy S (2020) Exploitation of Hi-C sequencing for improvement of genome assembly and in-vitro validation of differentially expressing genes in Jatropha curcas L. 3 Biotech 10(91):1–9

    Google Scholar 

  • Kaewpoo M, Te-chato S (2010) Study on ploidy level of micropropagated Jatropha curcas L. via flow cytometry. J Agric Technol 6:391–400

    Google Scholar 

  • Kancharla N, Jalali S, Narasimham JV, Nair V, Yepuri V, Thakkar B, Reddy V, Kuriakose B, Madan N, Arockiasamy S (2019) De novo sequencing and hybrid assembly of the biofuel crop Jatropha curcas L. identification of quantitative trait loci for geminivirus resistance. Genes 10:69

    Article  PubMed Central  CAS  Google Scholar 

  • Kasha KJ, Maluszynski M (2003) Production of doubled haploids in crop plant. An introduction. Doubled haploid production in crop plants. Springer, New York, pp 1–4

    Google Scholar 

  • Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Michael L, Nuccio GJ, Chen Z, McCuiston J, Wang W, Liebler T, Bullock P, Martin B (2017) MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542:105–109

    Article  CAS  PubMed  Google Scholar 

  • Kelliher T, Starr D, Su X, Tang G, Chen Z, Carter J, Wittich PE, Dong S, Green J, Bruch E, McCuiston J, Gu W, Sun Y, Strebe T, Roberts J, Bate NJ, Que Q (2019) One step genome editing of elite crop germplasm during haploid induction. Nat Biotech 37:287–292

    Article  CAS  Google Scholar 

  • Kumar A, Sharma S (2008) An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.). A review. Ind Crop Prod 28:1–10

    Article  CAS  Google Scholar 

  • Li C, Luo Li FuQ, Niu L, Xu FZ (2014) Isolation and functional characterization of JcFT, a FLOWERING LOCUS T (FT) homologous gene from the biofuel plant Jatropha curcas. Plant Biol 14:125

    Google Scholar 

  • Lichter R (1982) Induction of haploid plants from isolated pollen of Brassica napus L. Z Pflanzenphysiol 105:427–434

    Article  Google Scholar 

  • Liu FH, Kirchoff BK, Wu GJ, Liao JP (2007) Microsporogenesis and male gametogenesis in Jatropha curcas (Euphorbiaceae). J Torrey Bot Soc 134:335–343

    Article  Google Scholar 

  • Liu C, Li X, Meng D, Zhong Y, Chen C, Dong X, Xu X, Chen B, Li W, Li L, Tian X, Zhao H, Song W, Luo H, Zhang Q, Lai J, Jin W, Yan J, Chen S (2017) A 4-bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize. Mol Plant 10(3):520–522

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi PP, Moieni A, Ebrahimi A, Javidfar F (2012) Doubled haploid plants following colchicine treatment of microspore-derived embryos of oilseed rape (Brassica napus L.). Plant Cell Tissue Organ Cult 108:251–256

    Article  CAS  Google Scholar 

  • Mukherjee P, Varshney A, Johnson TS (2011) Jatropha curcas: a review on biotechnological status and challenges. Plant Biotechnol Rep 5:197–215

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Neeta SM, Arockiasamy S, Narasimham JV, Patil M, Yepuri V, Sarkar P (2019) Anther culture for the production of haploid and doubled haploids in Jatropha curcas L. and its hybrids. Plant Cell Tissue Organ Cult 138(1):181–192

    Article  CAS  Google Scholar 

  • Ochatt SJ (2008) Flow cytometry in plant breeding. Cytometry A 73:581–598

    Article  PubMed  CAS  Google Scholar 

  • Ochatt SJ, Zhang YX (1996) In vitro haploidization of fruit trees. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants. Current plant science and biotechnology in agriculture, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1858-5_11

    Chapter  Google Scholar 

  • Otto F (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. Methods Cell Biol 33:105–110

    Article  CAS  PubMed  Google Scholar 

  • Palmer CE, Keller WA, Arnison PG (1996) Utilization of Brassica haploids. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants. Current plant science and biotechnology in agriculture, vol 25. Springer, Dordrecht

    Google Scholar 

  • Perera PIP, Hocher V, Verdeil JL, Bandupriya HDD, Yakandawala DMD, Weerakoon LK (2008) Androgenic potential in coconut (Cocos nucifera L.). Plant Cell Tissue Organ Cult 92:293–302

    Article  CAS  Google Scholar 

  • Perera PIP, Ordonez CA, Lopez- Lavalle LAB, Dedicova B (2014) A milestone in the doubled haploid pathway of Cassava. Protoplasma 251:233–246

    Article  CAS  PubMed  Google Scholar 

  • Perera PIP, Ordonez CA, Dedicova B, Ortega PE (2014) Reprogramming of cassava (Manihot esculenta) microspores towards sporophytic development. AoB Plants 6:1–19

    Article  CAS  Google Scholar 

  • Ravi M, Chan SW (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464:615–618

    Article  CAS  PubMed  Google Scholar 

  • Ren J, Wu P, Tramp B, Tian X, Lubberstedt T, Chen S (2017) Novel technologies in doubled haploid line development. Plant Biotechnol 15:1361–1370

    Article  CAS  Google Scholar 

  • Reynolds TL (1997) Pollen embryogenesis. Plant Mol Biol 33:1–10

    Article  CAS  PubMed  Google Scholar 

  • Saharan V, Shrimali D, Shah MA, Ranwah Brand Sharma R (2011) Factors influencing the establishment of haploid embryonic callus from anthers in Jatropha curcas (L.). Indian J Genet 71:283–285

    CAS  Google Scholar 

  • Seguí-Simarro JM (2010) Androgenesis revisited. Bot Rev 76:377–404

    Article  Google Scholar 

  • Segui-Simarro JM (2015) Editorial: doubled haploidy in Model and Recalcitrant species. Front Plant Sci 6:1175

    Article  PubMed  PubMed Central  Google Scholar 

  • Segui-Simarro JM, Nuez F (2008) How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis. Physiol Plant 134:1–12

    Article  CAS  PubMed  Google Scholar 

  • Sen C, Singh RP, Singh MK, Singh HB (2011) Effect of cold pre-treatment on anther culture of boro rice hybrids. Int J Plant Reprod Biol 3:69–73

    Google Scholar 

  • Shariatpanahi ME, Ahmadi B (2016) Isolated microspore culture and its applications in plant breeding and genetics. In: Anis M, Ahmad N (eds) Plant tissue culture: propagation, conservation and crop improvement. Springer, Singapore, pp 487–507

    Chapter  Google Scholar 

  • Shariatpanahi ME, Belogradova K, Hessamvaziri L, Heberle-Bors E, Touraev A (2006) Efficient embryogenesis and regeneration in freshly isolated and cultured wheat (Triticum aestivum L.) microspores without stress pretreatment. Plant Cell Rep 25:1294–1299

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Singh B, Verma SK, Patra DD (2014) Jatropha curcas: a ten-year story from hope to despair. Renew Sustain Energy Rev 35:356–360

    Article  Google Scholar 

  • Smykalova I, Vetrovcova M, Klima M, Machackova I, Griga M (2006) Efficiency of microspore culture for doubled haploid production in the breeding project “Czech Winter Rape.” Czech J Genet Plant Breed 42:58–71

    Article  Google Scholar 

  • Snape JW, Simpson E (1986) The utilization of doubled haploid lines in quantitative genetics. Bulletin de la Société Botanique de France. Actualités Botaniques 133(4):59–66

    Article  Google Scholar 

  • Srivastava P, Chaturvedi R (2008) In vitro androgenesis in tree species: an update and prospect for further research. Biotechnol Adv 26:482–491

    Article  CAS  PubMed  Google Scholar 

  • Stoehr MU, Zsuffa L (1990) Induction of haploids in Populus maximowiczii via embryogenic calli. Plant Cell Tissue Organ Cult 23:49–58

    Article  Google Scholar 

  • Sujatha M, Mukta N (1996) Morphogenesis and plant regeneration from tissue cultures of Jatropha curcas. Plant Cell Tissue Organ Cult 44:135–141

    Article  Google Scholar 

  • Van Eijck J, Romijn H, Balkema A, Faaij A (2014) Global experience with Jatropha cultivation for bioenergy: an assessment of socio-economic and environmental aspects. Renew Sustain Energy Rev 32:869–889

    Article  CAS  Google Scholar 

  • Wang H, Dong B, Jiang J, Fang W, Guan Z, Liao Y, Chen S, Chen F (2014) Characterization of in vitro haploid and doubled haploid Chrysanthemum morifolium plants via unfertilized ovule culture for phenotypical traits and DNA methylation pattern. Front Plant Sci 5:738

    PubMed  PubMed Central  Google Scholar 

  • Wedzony M, Forster BP, Zur I, Golemiec E, Szechynska-Hebda M, Dubas GG (2009) Progress in doubled haploid technology in higher plants. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Berlin, pp 1–34

    Google Scholar 

  • Yan G, Liu H, Wang H, Lu Z, Wang Y, Mullan D, Hamblin J, Liu C (2017) Accelerated generation of selfed pure line plants for gene identification and crop breeding. Front Plant Sci 8:1786

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao L, Zhang Y, Liu C, Liu Y, Wang Y, Liang D, Liu J, Sahoo G, Kelliher T (2018) OsMATL mutation induces haploid seed formation in indica rice. Nat Plants 4:530–533

    Article  CAS  PubMed  Google Scholar 

  • Yepuri V, Narasimham JV, Sai Shankar P, Kancharla N, Jalali S, Arockiasamy S (2018) Influence of genetic and morphological markers in evaluation of Jatropha diversity. Int J Pure App Biosci 6:114–123

    Article  Google Scholar 

  • Yepuri V, Jalali S, Kancharla N, Reddy VB, Arockiasamy S (2020) Development of genome wide transposable elements based repeat junction markers in Jatropha (Jatropha curcas L.). Mol Biol Rep 47:5091–5099

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Tan E, Suzuki Y, Hirose Y, Kinoshita S, Okano H, Kudoh J, Shimizu A, Saito K, Watabe S, Asakawa S (2014) Dramatic improvement in genome assembly achieved using doubled-haploid genomes. Sci Rep 4:6780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Zhang L, Zhang S, Zhu S, Wu P, Chen Y, Li M, Jiang H, Wu G (2015) Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to drought stress. BMC Plant Biol 15:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Meng Z, Wang Y, Chen W, Sun C, Cui B, Cui J, Yu M, Zeng Z, Guo S, Luo D, Cheng JQ, Zhang R, Cui H (2017) Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat Plants 3:956–964

    Article  CAS  PubMed  Google Scholar 

  • Zheng MY (2003) Microspore culture in wheat (Triticum aestivum)-doubled haploid production via induced embryogenesis. Plant Cell Tissue Organ Cult 73:213–230

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ajit Sapre, R&D Group President at the Reliance Industries Ltd, for the encouragement and support for this work and Mr. Janyavula V. Narasimham and Dr Makarand Phadke for their guidance all through this study. We thank Reliance Industries Limited for funding this research. We thank Dr. Jose M. Seguí Simarro (Spain) & Dr. Raja Krishna Kumar for critically evaluating the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SA conceptualized the Idea, designed the experiments, wrote and edited the manuscript. VS, MP and SA conducted microspore culture experiments. PS did optical, SEM and TEM study. SH provided germplasm and hybrids. VS, MP and PS reviewed and edited the manuscript. SD provided guidance, support, reviewed and edited the paper. SA supervised the entire study.

Corresponding author

Correspondence to Arockiasamy Savarimuthu.

Ethics declarations

Conflict of interest

The authors declare that they don’t have any conflict of interest.

Additional information

Communicated by Maria Antonietta Germanà.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrivastava, V., Savarimuthu, A., Patil, M. et al. Gametic embryogenesis and callogenesis in Isolated microspore culture of Jatropha curcas L. a recalcitrant bioenergy crop. Plant Cell Tiss Organ Cult 144, 359–370 (2021). https://doi.org/10.1007/s11240-020-01959-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-020-01959-3

Keywords

Navigation