Skip to main content
Log in

The Local Geometry of Gas Injection into Saturated Homogeneous Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The injection of gases into liquid saturated porous media is of theoretical and practical interest (e.g., air sparging for the removal of volatile organic compounds from contaminated aquifer sediments). The influence of the rate of gas delivery and the vertical distance from the source are developed. The concept of a “near-injection region” is presented in which the pressure gradients exceed buoyant gradients and thus exhibits largely radial flow. The near-injection size is shown to have an area required to carry the injected gas flow under unit gradient. The parabolic movement of gas outside of this area which has often been observed is explained as reflecting the sum of many realizations of gas channels following random lateral movements as they precede upward independent of flux. These concepts are confirmed through comparison with published and experimental data of air injection into slabs consisting of saturated sands of a range of textures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baldwin C.A. and Gladden L.F. (1996). NMR imaging of nonaqueous-phase liquid dissolution in a porous medium. AIChE J. 42: 1341–1349

    Article  Google Scholar 

  • Brooks M.C., Wise W.R. and Annable M.D. (1999). Fundamental changes in in-situ air sparging flow patterns, Ground Water Monit. Rem. 19(2): 105–113

    Google Scholar 

  • Chaouche M., Rakotomalala N., Salin D., Xu B. and Yortsos Y.C. (1994). Invasion percolation in a hydrostatic or permeability gradient: experiments and simulations. Phys. Rev. E. 49(5): 4133–4139

    Article  Google Scholar 

  • Chen M.-R., Hinkley R.E. and Killough J.E. (1996). Computed tomography imaging of air Sparging in porous media. Water Resour Res. 32(10): 3013–3024

    Article  Google Scholar 

  • Clayton W.S. (1998). A field and laboratory investigation of air fingering during air sparging. Ground Water Monit. Rem. 18(3): 134–145

    Article  Google Scholar 

  • Conrad S.H., Wilson J.L., Mason W.R. and Peplinski W.J. (1992). Visualization of residual organic liquid trapped in aquifers. Water Resour. Res. 28(2): 467–478

    Article  Google Scholar 

  • Culligan Patricia J., Barry D.A., Parlange J.-Y., Steenhuis T.S. and Haverkamp R. (2000). Infiltration with controlled air escape. Water Resour. Res. 36(3): 781–785

    Article  Google Scholar 

  • Dror, I., Berkowitz, B. and Gorelick, S. M.: 2004, Effects of air injection on flow through porous media: observations and analyses of laboratory-scale processes, Water Resour. Res. doi:10.1029/2003WR002960.

  • Elder C.R. and Benson C.H. (1999). Air channel formation, size, spacing and tortuosity during air sparging. Ground Water Monit. Rem. 19(3): 171–181

    Article  Google Scholar 

  • Euler, L.: 1778, De reductione linearum curvarum ad arcus circulares, Nova Acta Acad. Petropol. 7, 58.

  • Frette V., Feder J., Jössang T. and Meakin P. (1992). Bouyancy-driven fluid migration in porous media. Phys. Rev. Let. 68(21): 3164–3167

    Article  Google Scholar 

  • Frette V., Feder J., Jössang T., Meakin P. and Jörgen Möy K. (1994). Fast, immiscible fluid–fluid displacement in three-dimensional porous media at finite viscosity contrast. Phys. Rev. E. 50(4): 2881–2890

    Article  Google Scholar 

  • Fry V.A., Selker J.S. and Gorelick S.M. (1997). Experimental investigations for trapping oxygen gas in saturated porous media for In situ bioremediation. Water Resour. Res. 33(12): 2687–2696

    Article  Google Scholar 

  • Granville, W. A., Smith, P. F. and Longley, W. R.: 1941, Elements of the Differential and Integral Calculus, Rev. Ed. Boston: Ginn and Co., 280.

  • Hein G.L., Gierke J.S., Hutzler N.J. and Falta R.W. (1997). Three-dimensional experimental testing of a two-phase flow-modeling approach for air sparging. Ground Water Monit. Rem. 17(3): 222–230

    Article  Google Scholar 

  • Hirsch L.M. and Thompson A.H. (1994). Size-dependent scaling of capillary invasion including buoyancy and pore size distribution effects. Phys. Rev. E. 50(3): 2069–2086

    Article  Google Scholar 

  • Imhoff P.T., Jaffe P.R. and Pinder G.F. (1994). An experimental study of complete dissolution of a nonaqueous-phase liquid in saturated porous media. Water Resour. Res. 30(2): 307–320

    Article  Google Scholar 

  • Ji W., Dahmani A., Ahlfeld D.P., Lin J.D. and Hill E. (1993). Laboratory study of air sparging: air flow visualization. Ground Water Monit. Rem. 13(4): 115–126

    Article  Google Scholar 

  • Klinkenberg L.J. (1941), The Permeability of Porous Media to Liquids and Gases. Drilling and Production Practice, Am. Petro. Inst., NY, pp. 200–213

  • Krauss, G., Lazik, D. and Geistlinger, H.: 2003, Gas Sparging for bioremediation: Experimental investigations of gas phase distribution, in: Proceedings of the 2nd European Bioremeidation Conference Chania/Kreta, Greece. March 30–April 7, 2003.

  • Lazik D., Geistlinger H., Krauss G., Beckmann A. and Schrimer M. (2002). Untersuchungen zum Strömungsverhalten und zur Lösungskinetik von Gasen im Mehrphaensystem “Aquifer”.. Grundwasser 3: 146–155

    Article  Google Scholar 

  • Leij F.J., Skaggs T.H. and Genuchten M.Th. (1991). Analytical solutions for solute transport in three-dimensional semi-infinite porous media. Water Resour. Res. 27(10): 2719–2733

    Article  Google Scholar 

  • Lohse D. (2003). Bubble Puzzles. Phys. Today 2: 36–41

    Article  Google Scholar 

  • McCray J.E. and Falta R.W. (1996). Defining the air sparging radius of influence for groundwater remediation. J. Contam. Hydrol. 24: 25–52

    Article  Google Scholar 

  • Niemet M. and Selker J.S. (2001). A new method for quantification of liquid saturation in 2-d translucent porous media systems using light transmission. Adv. Water Resour. 24: 651–666

    Article  Google Scholar 

  • Peterson J.W., Murray K.S., Tulu Y.I. and Peuler B.D. (2001). Air-flow geometry in air sparging of fine-grained sands. Hydrogeol. J. 9: 168–176

    Article  Google Scholar 

  • Reddy K.R., Semer R. and Adams J.A. (1999). Air flow optimization and surfactant enhancement to remediate toluene-contaminated saturated soils using air sparging. Environ. Manage. Health 10(1): 52–63

    Article  Google Scholar 

  • Reddy K.R. and Adams J.A. (2001). Effects of soil heterogeneity on airflow patterns and hydrocarbon removal during in situ air sparging. J. Geotech. Geoenviron. Eng. 3: 234–247

    Article  Google Scholar 

  • Reddy K.R. and Tekola L. (2004). Remediation of DNAPL source zones in groundwater using air sparging. Land Contam. Reclamation 12(2): 67–84

    Article  Google Scholar 

  • Roosevelt S.E. and Corapcioglu M.Y. (1998). Air bubble migration in a granular porous medium: Experimental studies. Water Resour. Res. 34(5): 1131–1142

    Article  Google Scholar 

  • Schroth M.H., Ahearn S.J., Selker J.S. and Istok J.D. (1996). Characterization of Miller-similar silica sands for laboratory hydrologic studies. Soil Sci. Am. J. 60: 1331–1339

    Article  Google Scholar 

  • Semer R., Adams J.A. and Reddy K.R. (1998). An experimental investigation of air flow patterns in saturated soils during air sparging. Geotech. Geol. Eng. 16: 59–75

    Article  Google Scholar 

  • Simunek, J., van Genuchten, M. Th., Sejna, M., Toride, N. and Leij, F. J.: 1999, The STANMOD computer software for evaluating solute transport in porous media using analytical solutions of convection-dispersion equation. Versions 1.0 and 2.0, IGWMC - TPS - 71, International Ground Water Modeling Center, Colorado School of Mines, Golden, Colorado, 32 pp.

  • Dijke M.I.J. and Zee S.E.A.T.M. (1998). Modeling of air sparging in a layered soil: Numerical and analytical approximations. Water Resour. Res. 34(3): 341–353

    Article  Google Scholar 

  • Xu B. and Yortsos Y.C. (1998). Invasion percolation with viscous forces. Phys. Rev. E. 57(1): 739–750

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Selker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selker, J.S., Niemet, M., Mcduffie, N.G. et al. The Local Geometry of Gas Injection into Saturated Homogeneous Porous Media. Transp Porous Med 68, 107–127 (2007). https://doi.org/10.1007/s11242-006-0005-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-006-0005-0

Keywords

Navigation