Skip to main content
Log in

Numerical Modelling of Swelling Pressure in Unsaturated Expansive Elasto-Plastic Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The focus of this work is to provide a new concept for accessing the swelling stress in expansive porous media, especially in highly compacted bentonite. The key to the new approach is the simulation with a chemical swelling model of an infinitesimal volume change followed by a back compaction Process. Free extension is allowed in the first step, to calculate the interlayer porosity change (micro) and the induced volume change potential (macro). The object-oriented FEM simulator GeoSys/RockFlow allows the combination of different processes. The hydro-mechanic/chemical (H2M/C) model takes into consideration two phase flow and deformation, as well as chemical swelling effects. The negative displacements on each boundary after the free extension simulation are taken as Dirichlet boundary conditions of the back compaction problem. The deformation step is simulated in the context of elasto-plasticity using the modified Cam-Clay model. The stresses obtained by back compaction represent the swelling pressure. A 2D example of compacted bentonite is analyzed with the new H2M/C model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Particle surface area (m2)

B :

Strain-displacement matrix (−)

c i :

Concentration of the ith ion (M)

C e :

Fourth order tensor of elasticity (Pa)

d :

Mean diameter of smectite particles (m)

D :

Diffusion coefficient (m2 s−1)

e :

Void ration in Cam-Clay model (−)

E :

Yong’s modulus (Pa)

\({\mathcal{F}}\) :

Yield function (Pa)

F :

Faraday coefficient (=96485.309 C mol−1)

\({\mathcal{G}}\) :

Plastic potential (Pa)

g :

Gravity Vector (m s−2)

J :

Flux (kg m−1 s−1)

I :

Ionic strength (mol m−3)

k :

Permeability (m2)

k :

Permeability tensor (m2)

k rel :

Relative permeability (−)

k sw rel :

Swelling relative permeability(−)

M :

Slope of critical state line (−)

m :

Effective layer number (−)

m :

Unit projection vector (−)

N :

Finite element shape function (−)

n :

Porosity (−)

n tot :

Total porosity (−)

n IL :

Interlayer porosity (−)

n ILmax :

Maximum interlayer porosity (−)

n IP :

Interparticle porosity (−)

n IPmin :

Minimum interparticle porosity (−)

n sw :

Porosity change potential (−)

p csl :

Preconsolidation pressure (Pa)

p :

Pressure or hydrostatic pressure (Pa)

p :

Pressure vector (Pa)

p c :

Suction (Pa)

p c :

Suction vector (Pa)

P S :

Mean stress (Pa)

\({\mathcal{Q}}\) :

Source term (m3 s−1)

q :

Norm of deviatoric stress tensor (Pa)

R :

Gas constant (J mol−1 K−1)

S total :

Total specific surface (m2 g−1)

S 0 :

External specific surface (m2 g−1)

S :

Saturation (−)

S eff :

Effective saturation (−)

S :

Saturation vector (−)

T :

Temperature (K)

u :

Displacement vector (−)

v :

Velocity vector (m s−1)

v s :

Solid velocity vector (m s−1)

X :

Mass fraction (−)

z i :

Ionic charge of the ith ion (−)

β:

Volume fraction of expansive minerals (−)

γ:

Phase (−)

λ:

Virgin compression index (−)

Λ:

Plastic multiplier (−)

κ:

Swelling/re-compression index (−)

μ:

Fluid viscosity (Pa s)

ργ :

Density of phase γ (kg m−3)

ρd :

Dry density of compacted bentonite (g m−3)

σ :

stress tensor ()

σ:

Stress ()

ε :

Strain tensor ()

ε:

Strain ()

τ:

Mean thickness of the effective sheets (m)

ν:

Poisson ratio (−)

ε:

Dielectric constant (−)

ε0 :

Permittivity of free space (8.854 × 10−12 C V −1 m −1)

η:

Dimensionless coefficient (−)

θ:

Volumetric water content (−)

θ s :

Saturated volumetric water content (−)

θ r :

Residual volumetric water content (−)

δ:

Thickness of diffuse double layer (DDL) (m)

ξ:

van Genuchten parameter (−)

Ω:

Domain (−)

ϕ:

Shape function (−)

ω:

Test function (−)

References

  • Agus, S. and Schanz, T.: 2005, Swelling pressures and wetting-drying curves of a highly compacted bentonite-sand mixture, in: T. Schanz (ed.), Unsaturated Soils: Experimental Studies, Proceedings of the International Conference “From Experimental Evidence Towards Numerical Modelling of Unsaturated Soils”. Weimar, Germany, September 18–19, 2003, Volume 1 Series: Springer Proceedings in Physics, Vol. 93 Volume Package: Unsaturated Soils: Experimental Studies 2005, XIV, 533 p., Springer.

  • E. Alonso J. Vaunat A. Gens (1999) ArticleTitleModelling the mechanical behaviour of expansive clays Eng. Geol. 54 173–183 Occurrence Handle10.1016/S0013-7952(99)00079-4

    Article  Google Scholar 

  • ASTM: 2001a, Standard test method for methylene blue index of clay, C837-99, Chapt. in: Book of standards, Volume:15.02. ASTM International, West Conshohocken, PA.

  • ASTM: 2001b, Standard test method for precipitated silica-surface area by Single B.E.T. nitrogen adsorption, D5604-96, Chapt. in: Book of standards, Volume:09.01: ASTM International, West Conshohocken, PA.

  • J. Bear Y. Bachmat (1990) Introduction to Modeling of Transport Phenomena in Porous Media Kluwer Academic Publishers Dordrecht

    Google Scholar 

  • L. Bennethum J. Cushman (2002a) ArticleTitleMulticomponent, multiphase thermodynamics of swelling porous media with electroquasistatics I: macroscale field equations Transport Porous Med 47 IssueID3 309–336 Occurrence Handle10.1023/A:1015558130315

    Article  Google Scholar 

  • L. Bennethum J. Cushman (2002b) ArticleTitleMulticomponent, multiphase thermodynamics of swelling porous media with electroquasistatics II: Constitutive theory Transport Porous Med 47 IssueID3 337–362 Occurrence Handle10.1023/A:1015562614386

    Article  Google Scholar 

  • L. Bennethum T. Weinstein (2004) ArticleTitleThree pressures in porous media Transport Porous Med 54 1–34 Occurrence Handle10.1023/A:1025701922798

    Article  Google Scholar 

  • M.A. Biot (1941) ArticleTitleGeneral theory of three-dimensional consolidation J. Appl. Phys 12 155–164 Occurrence Handle10.1063/1.1712886

    Article  Google Scholar 

  • G. Bolt (1955) ArticleTitleAnalysis of the validity of the Gouy-Chapman theory of the electric double layer J. Colloid Sci 10 206 Occurrence Handle10.1016/0095-8522(55)90027-1

    Article  Google Scholar 

  • L. Börgesson (1985) ArticleTitleWater flow and swelling pressure in non-saturated bentonite-based clay barriers Eng. Geol 314 229–237 Occurrence Handle10.1016/0013-7952(85)90013-4

    Article  Google Scholar 

  • D. Chapman (1913) ArticleTitleA contribution to the theory of electrocapillarity Philoso. Mag 25 475

    Google Scholar 

  • J. Cushman L. Bennethum P. Singh (2004) ArticleTitleTowards rational design of drug delivery substrates: I. Mixture theory for two-scale biocompatible polymers Multiscale Model. Simul 2 IssueID2 302–334 Occurrence Handle10.1137/030600357

    Article  Google Scholar 

  • B. Derjaguin L. Landau (1941) ArticleTitleTheory of the stability of strongly charged Lyophobic soils and of the adhension of stronghly charged particles in solutions of electrolytes Acta Physiochem. USSR 14 633–662

    Google Scholar 

  • FEBEX Working groups: 2000, Full-Scale Engineered Barriers EXperiment for a Deep Geological Repository for High Level Radioactive Waste in Crystalline Host Rock, Final report.

  • D. Gawin P. Baggio B.A. Schrefler (1995) ArticleTitleCoupled heat, water and gas flow in deformable porous media Int. J. Num. Meth. Fluids 20 969–987 Occurrence Handle10.1002/fld.1650200817

    Article  Google Scholar 

  • A. Gens A.J. Garcia-Molina S. Oliviella E.E. Alonso F. Huertas (1998) ArticleTitleAnalysis of a full scale in situ test simulating repository conditions Int. J. Numer. Anal. Meth. Geomech 22 515–548 Occurrence Handle10.1002/(SICI)1096-9853(199807)22:7<515::AID-NAG926>3.0.CO;2-8

    Article  Google Scholar 

  • M. Geraminegad S.K. Saxena (1986) ArticleTitleA coupled thermoelastic model for saturated-unsaturated porous media Géotechnique 36 539–550 Occurrence Handle10.1680/geot.1986.36.4.539

    Article  Google Scholar 

  • G. Gouy (1910) ArticleTitleSur la constitution de la charge électrique à la surface dun électrolyte J. de Physique 9 457–468

    Google Scholar 

  • R.E. Grim N. Güven (1978) Bentonite - Geology, Mineralogy, Properties and Uses Elsevier Sci. Amsterdam

    Google Scholar 

  • R. Helmig (1997) Multiphase Flow and Transport Processes in the Subsurface Springer Berlin

    Google Scholar 

  • Herbert, H.-J. and Moog, H. C.: 2002, Untersuchungen zur Quellung von Bentoniten in hochsalinaren Lösungen. Abschlussbericht, Gesellschaft für Anlagen und Reaktorsicherheit (GRS) mbH.

  • J. Huyghe J. Janssen (1999) ArticleTitleThermo-chemo-electro-mechanical formulation of saturated charged porous solids Trans. Porous Med 34 129–141 Occurrence Handle10.1023/A:1006509424116

    Article  Google Scholar 

  • Kahr, G., Bucher, F. and Mayor, P.: 1989, Water uptake and swelling pressure in a bentonite-based backfill, in: Materials Research Society Symposium Proceedings, Band: Scientific Basis for Nuclear Waste Management, Vol. 127, Springer, Berlin.

  • D. Katti V. Shanmugasundaram (2001) ArticleTitleInfluence of swelling on the microstructure of expansive clays Can. Geotech. J 38 IssueID1 175–182 Occurrence Handle10.1139/cgj-38-1-175

    Article  Google Scholar 

  • R. Kjellander S. Marcelja R. Pashley J. Quirk (1990) ArticleTitleA theoretical and experimental study of forces between charged mica surfaces in aqueous CaCl2 solutions J. Phys. Chem 92 IssueID7 4399–4407 Occurrence Handle10.1063/1.457750

    Article  Google Scholar 

  • O. Kolditz (2002) Computational Methods in Environmental Fluid Mechanics Springer Berlin

    Google Scholar 

  • O. Kolditz J. Jonge Particlede (2004) ArticleTitleNon-isothermal two-thase flow in low-permeable porous media Comput. Mech 33 IssueID5 345–364 Occurrence Handle10.1007/s00466-003-0537-x

    Article  Google Scholar 

  • J. Korsawe G. Starke W. Wang O. Kolditz (2006) ArticleTitleFinite element analysis of poro-elastic consolidation in porous media: standard and mixed approaches Comp. Meth. Appl. Mech. Engg 195 1096–1115 Occurrence Handle10.1016/j.cma.2005.04.011

    Article  Google Scholar 

  • R.J. Lenhard J.C. Parker (1987) ArticleTitleA model for hysteretic constitutive relations governing multiphase flow, 2. permeability-saturation relations Water Resour. Res 23 2197–2206

    Google Scholar 

  • R.W. Lewis B.A. Schrefler (1998) The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media EditionNumber2 Wiley New York

    Google Scholar 

  • P.F. Low (1979) ArticleTitleNature and properties of water in montomorillonite-water systems Soil Sci. Soc. Am. J. 43 651–658 Occurrence Handle10.2136/sssaj1979.03615995004300040005x

    Article  Google Scholar 

  • P.F. Low (1980) ArticleTitleThe swelling of clays. II. Montmorillonites Soil Sci. Soc. Am. J 44 IssueID4 667–676 Occurrence Handle10.2136/sssaj1980.03615995004400040001x

    Article  Google Scholar 

  • P.F. Low (1987) ArticleTitleStructural component of the swelling pressure of clays Langmuir 3 18–25 Occurrence Handle10.1021/la00073a004

    Article  Google Scholar 

  • Mielenz, R. C. and King, M. E.: 1955, Physical mechanical properties and engineering of clays, in: California Division of Mines Bulletin, Clays and clay technology: First National Conference on Clays and Clay Technology, Berkeley, CA. Vol. 169, pp. 196–254.

  • J. Mitchell (1993) Fundamentals of Soil Behaviour EditionNumber2 Wiley New York

    Google Scholar 

  • M. Murad J. Cushman (1997) ArticleTitleA multiscale theory of swelling porous media: II. Dual porosity models for consolidation of clays incorporating physical chemical effects Transport Porous Med 28 IssueID1 69–108 Occurrence Handle10.1023/A:1006539928751

    Article  Google Scholar 

  • Nishimura, T.: 2001, Swelling pressure of a compacted bentonite subjected to high suction, Clay Science for Engineering, in: Proceedings of the International Symposium on Suction, Swelling, Permeability and Structure of Clays – Is-Shizuoka. Balkema, Rotterdam, pp. 109–114.

  • K. Norrish (1955) ArticleTitleManner of swelling of montmorillonite Nature 4397 256–257

    Google Scholar 

  • Oelkers, E.: 1996, Physical and chemical propertis of rocks and fluids for chemical mass transport calculations. in: P.H. Ribbe (ed.), Reactive Transport in Porous Media, Reviews in Mineralogy, Vol. 34, Ch. 2, Mineralogy Society of America, pp. 130–191. Series Editor.

  • S. Olivella A. Gens (2000) ArticleTitleVapour transport in low permeability unsaturated soils with capillary effects Transport Porous Med 40 219–241 Occurrence Handle10.1023/A:1006749505937

    Article  Google Scholar 

  • B.E. Poling J.M. Prausnitz J.P. O’Connell (2001) The Properties of Gases and Liquids EditionNumber5 Mc Graw Hill New York

    Google Scholar 

  • H.B. Seed R.J. Woodward R. Lundgren (1962) ArticleTitlePrediction of swelling potential for compacted clays J. Soil Mech. Found. Div 88 IssueID3 53–87

    Google Scholar 

  • A. Sridharan (1990) ArticleTitleStrength and volume change behaviour of a sand-bentonite mixture Can. Geotech. J 27 404

    Google Scholar 

  • A. Sridharan D. Choudhury (2002) ArticleTitleSwelling pressure of sodium montmorillonites Géotechnique 52 IssueID6 459–462

    Google Scholar 

  • R. Tamagnini (2004) ArticleTitleAn extended Cam-clay model for unsaturated soils with hydraulic hysteresis Geotechnique 54 IssueID3 223–228 Occurrence Handle10.1680/geot.54.3.223.36352

    Article  Google Scholar 

  • K. Terzaghi (1925) Erdbaumechanik auf Bodenphysikalischer Grundlage Wien Deuticke

    Google Scholar 

  • S. Tripathy A. Sridharan T. Schanz (2004) ArticleTitleSwelling pressures of compacted bentonites from diffuse double layer theory Can. J. Geotech 41 IssueID3 437–450 Occurrence Handle10.1139/t03-096

    Article  Google Scholar 

  • US Bureau of Mines (ed.): 1997, Dictionary of Mining, Mineral, and Related Terms, 2nd edn, American Geological Institute, GA.

  • M.T. Genuchten Particlevan (1980) ArticleTitleA closed-form equation for predicting the hydraulic conductivity of saturated soils Soil Sci. Soc. Am. J 44 892–898 Occurrence Handle10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  • E. Verwey J. Overbeek (1948) Theory of the stability of lyophobic colloids Elsevier Amsterdam

    Google Scholar 

  • Volkaert, G., Ortiz, L., De Cannire, P., Put, P., Horsman, M., Harrington, S., Fioravante, J. and Impey, M.: 1994, Modelling and experiments on gas migration in repository host rocks, MEGAS project, Final Report, phase 1.

  • Wilding, L. and Tessier, D.: 1988, Genesis of Vertisols, Shrink-swell Phenomena, in: L.P. Wilding and R. Puentes (eds.), Vertisols: their Distribution, Properties, Classification and Management, Texas A&M University Printing Center, College Station, 55–81.

  • M. Xie S. Agus T. Schanz O. Kolditz (2004) ArticleTitleAn Upscaling Method and Numerical Modelling of Swelling/Shrinking Processes In Compacted Bentonite/Sand Mixtures Int. J. Numer. Anal. Meth. Geomech 28 IssueID15 1479–1502 Occurrence Handle10.1002/nag.396

    Article  Google Scholar 

  • X. Yan M. Luo (1995) Physical chemistry Wuhan University Press Wohan

    Google Scholar 

  • R. Yong B. Warkentin (1975) A Soil Properties and Behavior Elsevier Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingliang Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, M., Wang, W., De Jonge, J. et al. Numerical Modelling of Swelling Pressure in Unsaturated Expansive Elasto-Plastic Porous Media. Transp Porous Med 66, 311–339 (2007). https://doi.org/10.1007/s11242-006-0013-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-006-0013-0

Keywords

Navigation