Skip to main content
Log in

Traveling liquid bridges in unsaturated fractured porous media

  • Original Paper
  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Interplay between capillary, gravity and viscous forces in unsaturated fractures gives rise to a range of complex flow phenomena. Evidence of highly intermittent fluxes, preferential and sustainable flow pathways lead to potentially significant flow focusing of concern for regulatory and management of water resources in fractured rock formations. In previous work[Ghezzehei TA,Or D.: Water Resour. Res. In Review(2005)] we developed mechanistic models for formation, growth and detachment of liquid bridges in geometrical irregularities within fractures. Such discrete and intermittent flows present a challenge to standard continuum theories. Our focus here is on predicting travel velocities of detached liquid elements and their interactions with fracture walls. The scaling relationships proposed by Podgorski et al. [Podgorski, T., et al.: Phys. Rev. Lett. 8703(3), 6102-NIL_95 (2001)] provide a general framework for processes affecting travel velocities of discrete liquid elements in fractures, tubes, and in coarse porous media. Comparison of travel velocity and distance by discrete bridges relative to equivalent continuous film flow reveal significantly faster and considerably larger distances traversed by liquid bridges relative to liquid films. Coalescence and interactions between liquid bridges result in complex patterns of travel times and distances. Mass loss on rough fracture surfaces shortens travel distances of an element; however, results show that such retardation provides new opportunities for coalescence of subsequent liquid elements traveling along the same path, resulting in mass accumulation and formation of larger liquid elements traveling larger distances relative to smooth fracture surfaces. Such flow focusing processes may be amplified considering a population of liquid bridges within a fracture plane and mass accumulation in fracture intersections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bico J., Quere D. (2001) Falling slugs. J. Colloid Interface Sci. 243(1):262–264

    Article  Google Scholar 

  • Bikerman J.J. (1950) Sliding of drops from surfaces of different roughnesses. J. Colloid Sci. 5(4):349–359

    Article  Google Scholar 

  • Bretherton F.P. (1961) The motion of long bubbles in tubes. J. Fluid Mech. 10(2):166–188

    Article  Google Scholar 

  • de Gennes P.G. (1985) Wetting: Statics and dynamics. Rev. Mod. Phys. 57(3):827–863

    Article  Google Scholar 

  • Extrand C.W., Kumagai Y. (1995) Liquid-drops on an inclined plane - the relation between contact angles, drop shape, and retentive force. J. Colloid Interface Sci. 170(2):515–521

    Article  Google Scholar 

  • Faybishenko B., Bodvarsson G.S., Salve R. (2003) On the physics of unstable infiltration, seepage, and gravity drainage in partially saturated tuffs. J. Contaminant Hydrol. 62(3):63–87

    Article  Google Scholar 

  • Faybishenko B., Doughty C., Steiger M., Long J.C.S., Wood T.R., Jacobsen J.S., Lore J., Zawislanski P.T. (2000) Conceptual model of the geometry and physics of water flow a fractured basalt vadose zone. Water Resour. Res. 36(12):3499–3520

    Article  Google Scholar 

  • Furmidge C.G. (1962) Studies at phase interfaces .1. Sliding of liquid drops on solid surfaces and a theory for spray retention. J. Colloid Sci. 17(4):309

    Article  Google Scholar 

  • Ghezzehei, T.A., Or, D.: Liquid fragmentation and intermittent flow regimes in unsaturated fractured porous media. Water Resour. Res. 41(12), Art. No. W12406, (2005)

  • Glass R.J., Nicholl M.J., Ramirez A.L., Daily W.D. (2002) Liquid phase structure within an unsaturated fracture network beneath a surface infiltration event: field experiment - art. No. 1199. Water Resour. Res. 38(10):1199

    Article  Google Scholar 

  • Ho C.K. (2004) Asperity-induced episodic percolation in channels and fractures. J. Porous Media 7(3):155–164

    Article  Google Scholar 

  • Hoffman R.L. (1975) A study of the advancing interface. I. Interface shape in liquid–gas systems. J. Colloid Interface Sci. 50(2):228–241

    Article  Google Scholar 

  • Huh C., Scriven L.E. (1971) Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35(1):85–101

    Article  Google Scholar 

  • Kim H.-Y., Lee H.J., Kang B.H. (2002) Sliding of liquid drops down an inclined solid surface. J. Colloid Interface Sci. 247(2):372–380

    Article  Google Scholar 

  • Lamb H. (1945) Hydrodynamics. Dover, New York, NY

    Google Scholar 

  • Larkin B.K. (1967) Numerical solution of the equation of capillarity. J. Colloid Interface Sci. 23(3):305–312

    Article  Google Scholar 

  • Meheust, Y., Lovoll, G., Maloy, K.J., Schmittbuhl, J.: Interface scaling in a two-dimensional porous medium under combined viscous, gravity, and capillary effects. Phys. Rev. E 66(5), Art. No. 051603 (2002)

    Google Scholar 

  • Nicholl M.J., Glass R.J., Wheatcraft S.W. (1994) Gravity-driven infiltration instability in initially dry nonhorizontal fractures. Water Resour. Res. 30(9):2533–2546

    Article  Google Scholar 

  • Persoff P., Pruess K. (1995) Two-phase flow visualization and relative permeability measurement in natural rough-walled rock fractures. Water Resour. Res. 31(5):1175–1186

    Article  Google Scholar 

  • Podgorski, T., Flesselles, J.M., Limat, L.: Corners, cusps, and pearls in running drops - art. No. 036102. Phys. Rev. Lett. 8703(3), 6102-NIL_95 (2001)

    Google Scholar 

  • Prazak J., Sir M., Kubik F., Tywoniak J., Zarcone C. (1992) Oscillation phenomena in gravity-driven drainage in coarse porous-media. Water Resour. Res. 28(7):1849–1855

    Article  Google Scholar 

  • Spiegel M.R., Liu J. (1999) Mathematical Handbook of Formulas and Tables, 278 pp. McGraw-Hill Companies Inc., New York

    Google Scholar 

  • Su G.W., Geller J.T., Hunt J.R., Pruess K. (2004) Small-scale features of gravity-driven flow in unsaturated fractures. Vadose Zone J. 3(2):592–601

    Google Scholar 

  • Su G.W., Geller J.T., Pruess K., Wen F. (1999) Experimental studies of water seepage and intermittent flow in unsaturated, rough-walled fractures. Water Resour. Res. 35(4):1019–1037

    Article  Google Scholar 

  • Wilson S.D.R. (1988) The slow dripping of viscous fluid. J. Fluid. Mech. 190, 561–570

    Article  Google Scholar 

  • Wood T.R., Glass R.J., McJunkin T.R., Podgorney R.K., Laviolette R.A., Noah K.S., Stoner D.L., Starr R.C., Baker K. (2004) Unsaturated flow through a small fracture-matrix network: Part 1. Experimental observations. Vadose Zone J. 3(1):90–100

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dani Or.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Or, D., Ghezzehei, T.A. Traveling liquid bridges in unsaturated fractured porous media. Transp Porous Med 68, 129–151 (2007). https://doi.org/10.1007/s11242-006-9060-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-006-9060-9

Keywords

Navigation