Skip to main content
Log in

Chemo-hydro-mechanical coupled consolidation for a poroelastic clay buffer in a radioactive waste repository

  • Original Paper
  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Salt rock or rock with salty ground water are often encountered as host media for the underground disposal of radioactive waste. The nuclear waste, contained in a metallic canister, is usually placed inside a tunnel or a shaft excavated in the rock deposit together with a buffer of compacted bentonite inserted between the host rock and the canister to provide hydro-mechanical sealing. Due to the very low permeability and rich clay content, the bentonite acts as an osmotic semi-permeable membrane under a gradient of concentration of salt dissolved in the ground water. In addition, chemically induced expansion or shrinkage of the bentonite is generated by changes in the concentration of dissolved salt. By including such important chemical aspects, the hydro-mechanical governing equations are derived for this particular boundary value problem within the framework of a linear Biot-like isotropic poroelastic consolidation. The equations are solved analytically and a parametric study is undertaken to highlight the influence of chemical osmosis and chemical deformation on the flow and mechanical response of the bentonite buffer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Latin symbols :

 

\({c_{{\rm b}\ast}}\) :

Boundary chemical concentration

\({c_{\ast}}\) :

Chemical concentration

\({c_{0\ast}}\) :

Initial chemical concentration

D * :

Effective coefficient of diffusion of solute in pore fluid

J * :

Non-advective flux of solute

\({{k^\prime}_{{\rm h}\ast}}\) :

Coefficient of hydraulic permeability

\({{k^\prime}_{\pi \ast }}\) :

Coefficient of osmotic permeability

M s :

Solute molar mass

m v :

Coefficient of compressibility associated to a change of effective mean stress

m π :

Coefficient of compressibility associated to a change of osmotic pressure

n :

Porosity

n 0 :

Initial porosity

\({p_{{\rm b}\ast } }\) :

Boundary pore fluid pressure

p * :

Pore fluid pressure

R :

Universal gas constant equal to 8.314 J/(K mol)

r * :

Radial coordinate

RA:

Electrostatic repulsive minus attractive stress

T :

Absolute temperature

u * :

Radial displacement

\({v_{\ast}^{\rm s}}\) :

Flux of solid phase

v * :

Flux of pore fluid

\({v_{{\rm h}\ast}}\) :

Flux of pore fluid – component due to hydraulic pressure gradient

\({v_{\pi \ast}}\) :

Flux of pore fluid – component due to osmotic pressure gradient

\({v_{{\rm c}\ast} }\) :

Flux of solute

Greek symbols :

 

\({\alpha _\ast }\) :

Coefficient of linear strain associated to a change of chemical concentration

\({\varepsilon _{v} }\) :

Volumetric strain

γ l :

Unit weight of pore fluid

\({\xi _\ast }\) :

Relative change of pore fluid density associated to a change of chemical concentration

μ:

Shear modulus

ν:

Poisson’s ratio

π:

Osmotic pressure

ρ:

Density of the pore fluid

\({\sigma _{{\rm r}\ast } }\) :

Total radial stress

\({\sigma _{\theta \ast } }\) :

Total tangential stress

\({\sigma _\ast }\) :

Total mean stress

σ:

Osmotic efficiency

References

  • Barbour S.L. and Fredlund D.G. (1989). Mechanisms of osmotic flow and volume changes in clay soils. Can. Geotech. J. 26: 551–562

    Article  Google Scholar 

  • Biot M.A. (1941). General theory of three dimensional consolidation. J. Appl. Phys. 12: 155–164

    Article  Google Scholar 

  • Börgesson, L.: Compilation of laboratory data for buffer and backfill materials in the Prototype Repository, Aspo Hard Rock Laboratory. Int. Progress Report IPR-01-34, SKB, Sweden (2001)

  • Crank J. (1956). The Mathematics of Diffusion. Oxford University Press, London

    Google Scholar 

  • Crump K.S. (1976). Numerical inversion of Laplace transform using a Fourier series approximation. J. ACM 23: 89–96

    Article  Google Scholar 

  • Di Maio C. (1996). Exposure of bentonite to salt solution: osmotic and mechanical effects. Geotechnique 46: 695–707

    Google Scholar 

  • Eringen A.C. (1994). A continuum theory of swelling porous elastic soils. Int. J. Eng. Sci. 32: 1337–1349

    Article  Google Scholar 

  • Fam M. and Santamarina J.C. (1996). Coupled diffusion-fabric-flow phenomena: an effective stress analysis. Can. Geotech. J. 33: 515–522

    Google Scholar 

  • Fernandez F. and Quigley R.M. (1991). Controlling the destructive effects of clay–organic liquid interactions by application of effective stress. Can. Geotech. J. 28: 388–398

    Google Scholar 

  • Forsmark, T., Rhen, I.: Hydrogeology-Injection test Campaign 2, flow measurement of DA3575G01, ground water salinity, ground water leakage into G-, I- and J-tunnels. Int. Progress Report, IPR-01-31 (2005)

  • Gens A., Garcia-Molina A.J., Olivella S., Alonso E.E. and Huertas F. (1998). Analysis of a full scale in situ test simulating repository conditions. Int. J. Numer. Anal. Methods Geomech. 22: 515–548

    Article  Google Scholar 

  • Ghassemi A. and Diek A. (2003). Linear chemo-poroelasticity for swelling shales: theory and application. J. Petrol. Eng. 38: 199–212

    Article  Google Scholar 

  • Gouy G. (1910). Sur la constitution de la charge electrique a la surface d’un electrolyte. Annales de Physique (Paris), Serie 4 9: 457–468

    Google Scholar 

  • Greenberg J.A., Mitchell J.K. and Witherspoon P.A. (1973). Coupled salt and pore flows in a groundwater basin. J. Geophys. Res. 78: 6341–6353

    Article  Google Scholar 

  • Guimaraes, L.: Analysis multi-componente no isotermo en medio poroso deformable no saturado. Ph.D. Thesis, Technical University of Catalonia, Barcelona, Spain (in Spanish) (2002)

  • Hassanizadeh S.M. (1986). Derivation of basic equations of mass transport in porous media. Part I: macroscopic balance laws. Adv. Water Resour. 8: 196–206

    Article  Google Scholar 

  • Heidug W.K. and Wong S.W. (1996). Hydration swelling of water-adsorbing rocks: a constitutive model. Int. J. Numer. Anal. Methods Geomech. 20: 403–430

    Article  Google Scholar 

  • Johannesson, L.: Manufacturing of bentonite buffer for the Prototype Repository, Aspo Hard Rock Laboratory. Int. Progress Report IPR-02-19, SKB, Sweden (2002)

  • Kaczmarek M. (2001). Chemically induced deformation of a porous layer coupled with advective-dispersive transport, Analytical solutions. Int. J. Numer. Anal. Methods Geomech. 25: 757–770

    Article  Google Scholar 

  • Kaczmarek M. and Hueckel T. (1998). Chemo-mechanical consolidation of clays: analytical solutions for a linearized one-dimensional problem. Trans. Porous Media 32: 49–74

    Article  Google Scholar 

  • Karnland, O., Muurinen, A., Karlsson, F.: Bentonite swelling pressure in NaCl solutions-Experimentally determined data and model calculations. In: Alonso, E.E., Ledesma, A. (eds.) Advances in Understanding Engineered Clay Barriers, pp. 241–256, Balkema (2005)

  • Keijzer T.h.J.S. and Loch J.P.G. (2000). Chemical osmosis in compacted dredging sludge. Soil Sci. Soc. Am. 65: 1045–1055

    Article  Google Scholar 

  • Kooi H. and Garavito A.M. (2003). Numerical modeling of chemical osmosis and ultrafiltration across clay formations. J. Geochem. Explor. 78(79): 333–336

    Article  Google Scholar 

  • Ledesma, A., Chen, G.J.: T-H-M modeling of the Prototype Repository Experiment: comparison with current measurements. In: Alonso, E.E., Ledesma, A. (eds.) Advances in Understanding Engineered Clay Barriers, pp. 339-346, Balkema (2005)

  • Manassero M. and Dominijanni A. (2003). Modelling the osmosis effect on solute migration through porous media. Geotechnique 53: 481–492

    Google Scholar 

  • Mata C., Guimaraes L., Ledesma A., Gens A. and Olivella S. (2005). A hydro-geochemical analysis of the saturation process with salt water of a bentonite crushed granite rock mixture in an engineered nuclear barrier. Eng. Geol. 81: 227–245

    Article  Google Scholar 

  • Metten U. (1966). Desalination by Reverse Osmosis. MIT Press, Cambridge

    Google Scholar 

  • Mitchell J.K. (1993). Fundamentals of Soil Behavior. John Wiley, New York

    Google Scholar 

  • Mitchell J.K., Greenberg J.A. and Witheroon P.A. (1973). Chemo-osmotic effects in fine-grained soils. ASCE J. Soil Mech. Found. Eng. 99: 307–322

    Google Scholar 

  • Morgenstern, N., Balasubramoniam, B.I.: Effects of pore fluid on the swelling of clay-shale. In: Proceedings of the 4th International Conference on Expansive Soils, Denver, pp. 190-205 (1980)

  • Murad M.A. and Cushman J.H. (1996). Multiphase flow and deformation in hydrophilic swelling porous media. Int. J. Eng. Sci. 34: 313–338

    Article  Google Scholar 

  • Musso G., Romero E., Gens A. and Castellanos E. (2003). The role of structure in the chemically induced deformations of FEBEX bentonite. Appl. Clay Sci. 23: 229–237

    Article  Google Scholar 

  • Neuzil C.E. (2000). Osmotic generation of ‘anomalous’ fluid pressure in geological environments. Nature 403: 182–184

    Article  Google Scholar 

  • Olivella S., Carrera J., Gens A. and Alonso E.E. (1994). Non-isothermal multiphase flor of brine and gas through saline media. Trans. Porous Media 15: 271–293

    Article  Google Scholar 

  • Rutqvist J., Borgesson L., Chijimatsu M., Kobayashi A., Jing L., Nguyen T.S., Noorishad J. and Tsang C.F. (2001). Thermohydromechanics of partially saturated geological media: governing equations and formulation of four finite element codes. Int. J. Rock Mech. Mining Sci. 38: 105–127

    Article  Google Scholar 

  • Sherwood J.D. (1994). A model of hindered solute transport in a poroelastic shale. Proc. Roy. Soc. Lond. A 445: 679–692

    Article  Google Scholar 

  • Sridharan A. and Rao V.G. (1973). Mechanisms controlling volume change of saturated clays and the role of effective stress concept. Geotechnique 23(3): 359–382

    Article  Google Scholar 

  • Terzaghi K. (1943). Theoretical Soil Mechanics. John Wiley, New York

    Google Scholar 

  • Villar, M.V.: MX-80 bentonite thermo-hydro-mechanical characterization performed at CIEMAT in the context of the Prototype project. Ciemat Technical Report 1053 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangjing Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G., Gallipoli, D. & Ledesma, A. Chemo-hydro-mechanical coupled consolidation for a poroelastic clay buffer in a radioactive waste repository. Transp Porous Med 69, 189–213 (2007). https://doi.org/10.1007/s11242-006-9083-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-006-9083-2

Keywords

Navigation