Skip to main content

Advertisement

Log in

Nonlinear Pressure Diffusion in Flow of Compressible Liquids Through Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In the flow of liquids through porous media, nonlinear effects arise from the dependence of the fluid density, porosity, and permeability on pore pressure, which are commonly approximated by simple exponential functions. The resulting flow equation contains a squared gradient term and an exponential dependence of the hydraulic diffusivity on pressure. In the limiting case where the porosity and permeability moduli are comparable, the diffusivity is constant, and the squared gradient term can be removed by introducing a new variable y, depending exponentially on pressure. The published transformations that have been used for this purpose are shown to be special cases of the Cole–Hopf transformation, differing in the choice of integration constants. Application of Laplace transformation to the linear diffusion equation satisfied by y is considered, with particular reference to the effects of the transformation on the boundary conditions. The minimum fluid compressibilities at which nonlinear effects become significant are determined for steady flow between parallel planes and cylinders at constant pressure. Calculations show that the liquid densities obtained from the simple compressibility equation of state agree to within 1% with those obtained from the highly accurate Wagner-Pruß  equation of state at pressures to 20 MPa and temperatures approaching 600 K, suggesting possible applications to some geothermal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aadnoy B.S., Finjord J.: Analytical solution of the Boltzmann transient line sink for an oil reservoir with pressure-dependent formation properties. J. Petrol. Sci. Eng. 15, 343–360 (1996)

    Article  Google Scholar 

  • Ambastha A.K., Zhang M.Y.: Iterative and numerical solutions for pressure-transient analysis of stress-sensitive reservoirs and aquifers. Comput. Geosci. 22(6), 601–606 (1996)

    Article  Google Scholar 

  • Ames W.F.: Ad hoc exact techniques for nonlinear partial differential equations. In: Ames, W.F.(eds) Nonlinear Partial Differential Equations: A Symposium on Methods of Solution, chapter 4, pp. 55–72. Academic Press, New York (1967)

    Google Scholar 

  • Aronofsky J.S.: Effect of gas slip on unsteady flow of gas through porous media. J.Appl. Phys. 25(1), 48–53 (1954)

    Article  Google Scholar 

  • Brace W.F., Walsh J.B., Frangos W.T.: Permeability of granite under high pressure. J. Geophys. Res. 73(6), 2225–2236 (1968)

    Article  Google Scholar 

  • Braeuning S., Jelmert T.A., Vik S.A.: The effect of the quadratic gradient term on variable-rate well tests. J. Petrol. Sci. Eng. 21, 203–222 (1998)

    Article  Google Scholar 

  • Bruce G.H., Peaceman D.W., Rachford H.H., Rice J.D.: Calculation of unsteady gas flow through porous media. Trans. Am. Inst. Mining Metall. Eng. 198, 79–92 (1953)

    Google Scholar 

  • Carslaw H.S., Jaeger J.C.: Conduction of Heat in Solids, 2nd edn. Oxford University Press, New York (1959)

    Google Scholar 

  • Chakrabarty C., Farouq Ali S.M., Tortike W.S.: Analytical solutions for radial pressure distribution including the effects of the quadratic-gradient term. Water Resour. Res. 29(4), 1171–1177 (1993)

    Article  Google Scholar 

  • Cole J.D.: On a quasi-linear parabolic equation occurring in aerodynamics. Quart. Appl. Math. 9(3), 225–236 (1951)

    Google Scholar 

  • Crank J.: The Mathematics of Diffusion. Oxford University Press, London (1956)

    Google Scholar 

  • Esaki T., Zhang M., Takeshita A., Mitani Y.: Rigorous theoretical analysis of a flow-pump permeability test. Geotech. Test. J. 19(3), 241–246 (1996)

    Article  Google Scholar 

  • Fox P.J., Zhu Y.: Discussion on ‘Theoretical evaluation of the transient response of constant head and constant flow-rate permeability tests’ by M. Zhang, M. Takahashi, R.H. Morin, and T. Esaki. Geotech. Test. J. 22(4), 356–357 (1999)

    Article  Google Scholar 

  • Freeze R.A., Cherry J.A.: Groundwater. Prentice-Hall, Englewood Cliffs (1979)

    Google Scholar 

  • Hopf E.: The partial differential equation u t  + uu x  =  μu xx . Commun. Pure Appl. Math. 3, 201–216 (1950)

    Article  Google Scholar 

  • Jelmert T.A., Vik S.A.: Analytic solution of the nonlinear diffusion equation for fluids of constant compressibility. J. Petrol. Sci. Eng. 14, 231–233 (1996)

    Article  Google Scholar 

  • Kikani J., Pedrosa O.A.: Perturbation analysis of stress-sensitive reservoirs. SPE Form. Eval. 6(3), 379–386 (1991)

    Google Scholar 

  • Lesnic D., Elliott L., Ingham D.B., Clennell B., Knipe R.J.: A mathematical model and numerical investigation for determining the hydraulic conductivity of rocks. Int. J. Rock Mech. Mining Sci. 34(5), 741–759 (1997)

    Article  Google Scholar 

  • Liang Y., Price J.D., Wark D.A., Bruce Watson E.: Nonlinear pressure diffusion in a porous medium: approximate solutions with applications to permeability measurements using the transient pulse decay method. J. Geophys. Res. B 106(1), 529–535 (2001)

    Article  Google Scholar 

  • Liggett J.A., Liu P.L.-F.: The Boundary Integral Equation Method for Porous Media Flow. George Allen and Unwin, London (1983)

    Google Scholar 

  • Lin W.: Parametric analyses of the transient method of measuring permeability. J. Geophys. Res. B 87(2), 1055–1060 (1982)

    Article  Google Scholar 

  • Macdonald J.R.: Review of some experimental and analytical equations of state. Rev. Modern Phys. 41(3), 316–349 (1969)

    Article  Google Scholar 

  • Marshall S.L.: A rapidly-converging modified Green’s function for Laplace’s equation in a rectangle. Proc. R. Soc. Lond. A 455, 1739–1766 (1999)

    Article  Google Scholar 

  • Marshall S.L.: A periodic Green function for calculation of coulombic lattice potentials. J. Phys. Condens. Matter 12, 4575–4601 (2000)

    Article  Google Scholar 

  • Marshall S.L.: Calculation of coulombic lattice potentials. Part II. Spherical harmonic expansion of the Green function. J. Phys. Condens. Matter 14, 3175–3198 (2002)

    Article  Google Scholar 

  • Morin R.H., Olsen H.W.: Theoretical analysis of the transient pressure response from a constant flow rate hydraulic conductivity test. Water Resour. Res. 23(8), 1461–1470 (1987)

    Article  Google Scholar 

  • Neuman S.P.: Theoretical derivation of Darcy’s Law. Acta Mech. 25, 153–170 (1977)

    Article  Google Scholar 

  • Newman J.: Cathodic protection with parallel cylinders. J. Electrochem. Soc. 138(12), 3554–3560 (1991)

    Article  Google Scholar 

  • Odeh A.S., Babu D.K.: Comparison of solutions of the nonlinear and linearized diffusion equations. SPE Reserv. Eng. 3(4), 1202–1206 (1988)

    Google Scholar 

  • Song I., Renner J.: Linear pressurization method for determining hydraulic permeability and specific storage of a rock sample. Geophys. J. Int. 164(3), 685–696 (2006)

    Article  Google Scholar 

  • Song I., Elphick S.C., Main I.G., Ngwenya B.T., Odling N.W., Smyth N.F.: One-dimensional fluid diffusion induced by constant-rate flow injection: theoretical analysis and application to the determination of fluid permeability and specific storage of a cored rock sample. J. Geophys. Res. 109, B05207 (2004)

    Article  Google Scholar 

  • Tanaka Y., Matsuda Y., Fujiwara H., Kubota H., Makita T.: Viscosity of (water + alcohol) mixtures under high pressure. Int. J. Thermophys. 8(2), 147–163 (1987)

    Article  Google Scholar 

  • Tong, D.-K., Wang, R.-H.: Exact solution of pressure transient model for fluid flow in fractal reservoir including a quadratic gradient term. Energy Sour. 27, 1205–1215 (2005)

    Google Scholar 

  • Trimmer D., Bonner B., Heard H.C., Duba A.: Effect of pressure and stress on water transport in intact and fractured gabbro and granite. J. Geophys. Res. B 85(12), 7059–7071 (1980)

    Article  Google Scholar 

  • Wagner, W., Pruß, A.: International equations for the saturation properties of ordinary water substance. Revised according to the International Temperature Scale of 1990. Addendum to J. Phys. Chem. Ref. Data 16, 893 (1987). J. Phys. Chem. Ref. Data 22, 783–787 (1993)

  • Wagner W., Pruß A.: The IAPWS Formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387–536 (2002)

    Article  Google Scholar 

  • Wark D.A., Watson E.B.: Grain-scale permeabilities of texturally equilibrated, monomineralic rocks. Earth Planet. Sci. Lett. 164, 591–605 (1998)

    Article  Google Scholar 

  • Whitaker S.: The Method of Volume Averaging, volume 13 of Theory and Applications of Transport in Porous Media. Kluwer Academic Publishers, Dordrecht, The Netherlands (1999)

    Google Scholar 

  • Yeung K., Chakrabarty C., Zhang X.: An approximate analytical study of aquifers with pressure-sensitive formation permeability. Water Resour. Res. 29(10), 3495–3501 (1993)

    Article  Google Scholar 

  • Nolen-Hoeksma R.C., Nolen-Hoeksma R.C., Nur A.: Pore pressure profiles in fractured and compliant rocks. Geophys. Prospect. 42, 693–714 (1994)

    Article  Google Scholar 

  • Zhang M., Takahashi M., Morin R.H., Esaki T.: Theoretical evaluation of the transient response of constant-head and constant flow-rate permeability tests. Geotech. Test. J. 21(1), 52–57 (1998)

    Article  Google Scholar 

  • Zhilichev Y.: Calculation of magnetic field of tubular permanent-magnet assemblies in cylindrical bipolar coordinates. IEEE Trans. Magn. 43(7), 3189–3196 (2007)

    Article  Google Scholar 

  • Zoback M.D., Byerlee J.D.: The effect of microcrack dilatancy on the permeability of Westerly granite. J. Geophys. Res. 80(5), 752–755 (1975)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon L. Marshall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marshall, S.L. Nonlinear Pressure Diffusion in Flow of Compressible Liquids Through Porous Media. Transp Porous Med 77, 431–446 (2009). https://doi.org/10.1007/s11242-008-9275-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-008-9275-z

Keywords

Navigation