Skip to main content

Advertisement

Log in

Approximate Solutions for Pressure Buildup During CO2 Injection in Brine Aquifers

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

If geo-sequestration of CO 2 is to be employed as a key emissions reduction method in the global effort to mitigate against climate change, simple yet robust screening of the risks of disposal in brine aquifers will be needed. There has been significant development of simple analytical and semi-analytical techniques to support screening analysis and performance assessment for potential carbon sequestration sites. These techniques have generally been used to estimate the size of CO 2 plumes for the purpose of leakage rate estimation. A common assumption is that both the fluids and the geological formation are incompressible. Consequently, calculation of pressure distribution requires the specification of an arbitrary radius of influence. In this article, a new similarity solution is derived using the method of matched asymptotic expansions. A large time approximation of this solution is then extended to account for inertial effects using the Forchheimer equation. By allowing for slight compressibility in the fluids and formation, the solutions improve on previous work by not requiring the specification of an arbitrary radius of influence. The validity of both solutions is explored by comparison with equivalent finite difference solutions, revealing that the new method can provide robust and mathematically rigorous solutions for screening level analysis, where numerical simulations may not be justified or cost effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

Forchheimer parameter [L−1].

c o :

Compressibility of CO2 [M−1LT2].

c r :

Compressibility of geological formation [M−1LT2].

c w :

Compressibility of brine [M−1LT2].

g :

Gravitational acceleration [LT−2].

h :

CO2 brine interface elevation [L].

h D = h/H :

Dimensionless interface elevation [–].

H :

Formation thickness [L].

k :

Permeability [L2].

M 0 :

Mass injection rate [MT−1].

p :

Fluid pressure [ML−1T−2].

p D = 2π H ρ o kp/M 0 μ o :

Dimensionless pressure [–].

q o :

CO2 flux [LT−1].

q oD = 2π Hr w ρ o q o/M 0 :

Dimensionless CO2 flux [–].

q w :

Brine flux [LT−1].

q wD = 2π Hr w ρ o q w/M 0 :

Dimensionless brine flux [–].

r :

Radial distance [L].

r D = r/r w :

Dimensionless radius [–].

r w :

Well radius [L].

S = S s H :

Storativity [–].

\({S_{\rm s}=\rho_{\rm w}g\phi(c_{\rm w}+c_{\rm r})}\) :

Specific storage [L−1].

t :

Time [T].

\({t_{\rm D}=M_0t/2\pi\phi Hr_{\rm w}^2\rho_{\rm o}}\) :

Dimensionless time [–].

T = ρ w g kHw :

Transmissivity [L2T−1].

α = M 0 μ o(c r + c w)/2π H ρ o k :

Dimensionless compressibility [–].

β = M 0 kb/2π H r w μ o :

Dimensionless Forchheimer parameter [–].

γ = μ o/μ w :

Viscosity ratio [–].

\({\epsilon=(c_{\rm o}-c_{\rm w})/(c_{\rm r}+c_{\rm w})}\) :

Normalized fluid compressibility difference [–].

κ≈ 0.5772:

Euler-Mascheroni constant [–].

μ o :

Viscosity of CO2 [ML−1T−1].

μ w :

Viscosity of brine [ML−1T−1].

ρ o :

Density of CO2 [ML−3].

ρ w :

Density of brine [ML−3].

σ = ρ o/ρ w :

Density ratio [–].

\({\phi}\) :

Porosity [–].

References

  • Bachu S.: CO 2 storage in geological media: role, means, status and barriers to deployment. Prog. Energy Combust. Sci. 34, 254–273 (2008)

    Article  Google Scholar 

  • Bear J.: Hydraulics of Groundwater. McGraw-Hill, New York (1979)

    Google Scholar 

  • Benson S., Cook P.: Underground geological storage. In: Metz, B., Davidson, O., de Coninck, H., Loos, M., Meyer, L. (eds) IPCC Special Report on Carbon Dioxide Capture and Storage, pp. 195–276. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  • Bickle M., Chadwick A., Huppert H.E., Hallworth M., Lyle S.: Modelling carbon dioxide accumulation at Sleipner: implications for underground carbon storage. Earth Planet Sci. Lett. 255, 164–176 (2007)

    Article  Google Scholar 

  • Blunt M., King P.: Relative permeabilities from two- and three-dimensional porescale network modeling. Transp. Porous Media 6, 407–433 (1991)

    Article  Google Scholar 

  • Damen K., Faaij A., Turkenburg W.: Health, safety and environmental risks of underground CO 2 storage—overview of mechanisms and current knowledge. Clim. Change 74, 289–318 (2006)

    Article  Google Scholar 

  • DEFRA:. The Scientific Case for Setting a Long-Term Emission Reduction Target, UK (2003)

  • Doughty C.: Modeling geologic storage of carbon dioxide: comparison of non-hysteretic and hysteretic characteristic curves. Energy Conv. Manag. 48, 1768–1781 (2007)

    Article  Google Scholar 

  • Doughty C., Pruess K.: Modeling supercritical carbon dioxide injection in heterogeneous porous media. Vadose Zone J. 3, 837–847 (2004)

    Article  Google Scholar 

  • EPRI: The Power to Reduce CO 2 Emissions. Electric Power Research Institute, Palo Alto, CA (2007)

  • Forchheimer P.: Wasserbewegung durch Boden. Z. Ver. Deutsch Ing. 45, 1782–1788 (1901)

    Google Scholar 

  • Gasda S.E., Celia M.A., Nordbotten J.M.: Upslope plume migration and implications for geological CO 2 sequestration in deep, saline aquifers. IES J. Part A: Civ. Struct. Eng. 1(1), 2–16 (2008)

    Article  Google Scholar 

  • Geertsma, J.: Estimating the coefficient of inertial resistance in fluid flow through porous media. SPE J. pp. 445–450, SPE Paper No. 4706 (1974)

  • Giorgis T., Carpita M., Battistelli A.: 2D modeling of salt precipitation during the injection of dry CO 2 in a depleted gas reservoir. Energy Conv. Manag. 48, 1816–1826 (2007)

    Article  Google Scholar 

  • Hesse M.A., Tchelepi H.A., Cantwell B.J., Orr F.M. Jr: Gravity currents in horizontal porous layers: transition from early to late self-similarity. J. Fluid Mech. 577, 363–383 (2007)

    Article  Google Scholar 

  • House K.Z., Schrag D.P., Harvey C.F., Lackner K.S.: Permanent carbon dioxide storage in deep-sea sediments. Proc. Natl. Acad. Sci. 103(33), 12,291–12,295 (2006)

    Article  Google Scholar 

  • IEA: World Energy Outlook 2007—China and India Insights. International Energy Agency, Paris, France (2007)

  • IPCC: Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK (2007a)

  • IPCC: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK (2007b)

  • Juanes R., Spiteri E.J., Orr F.M. Jr, Blunt M.J.: Impact of relative permeability hysteresis on geological CO 2 storage. Water Resour. Res. 42, W12,418 (2006)

    Article  Google Scholar 

  • Kevorkian J.: Partial Differential Equations. Thompson Information/Publishing Group, Pacific Grove, CA (1990)

    Google Scholar 

  • Korre A., Shi J.Q., Imrie C., Grattoni C., Durucan S.: Coalbed methane reservoir data and simulator parameter uncertainty modelling for CO 2 storage performance assessment. Int. J. Greenhouse Gas Control 1, 492–501 (2007)

    Article  Google Scholar 

  • Lagneau V., Pipart A., Catalette H.: Reactive transport modelling of CO 2 sequestration in deep saline aquifers. Oil Gas Sci. Tech. Rev. IFP 60(2), 231–247 (2005)

    Article  Google Scholar 

  • LeNeveu D.M.: CQUESTRA, a risk and performance assessment code for geological sequestration of carbon dioxide. Energy Conv. Manag. 49, 32–46 (2008)

    Article  Google Scholar 

  • Lyle S., Huppert H.E., Hallworth M., Bickle M., Chadwick A.: Axisymmetric gravity currents in a porous medium. J. Fluid Mech. 543, 293–302 (2005)

    Article  Google Scholar 

  • Mathias S.A., Butler A.P., Zhan H.: Approximate solutions for Forchheimer flow to a well. J. Hydraul. Eng. 134(9), 1318–1325 (2008)

    Article  Google Scholar 

  • Nordbotten J.M., Celia M.A.: Similarity solutions for fluid injection into confined aquifers. J. Fluid Mech. 561, 307–327 (2006)

    Article  Google Scholar 

  • Nordbotten J.M., Celia M.A., Bachu S.: Injection and storage of CO 2 in deep saline aquifers: analytic solution for CO 2 plume evolution during injection. Transp. Porous Media 58, 339–360 (2005)

    Article  Google Scholar 

  • Nordbotten J.M., Celia M.A., Bachu S., Dahle H.K.: Semianalytical solution for CO 2 leakage through an abandoned well. Environ. Sci. Technol. 39, 602–611 (2005)

    Article  Google Scholar 

  • Oldenburg C.M.: Screening and ranking framework for geologic CO 2 storage site selection on the basis of health, safety, and environmental risk. Environ. Geol. 54(8), 1687–1694 (2007)

    Article  Google Scholar 

  • Oldenburg C.M., Unger A.J.A.: On leakage and seepage from geologic carbon sequestration sites: unsaturated zone attenuation. Vadose Zone J. 2, 287–296 (2003)

    Article  Google Scholar 

  • Oldenburg C.M., Unger A.J.A.: Coupled vadose zone and atmospheric surface-layer transport of carbon dioxide from geologic carbon sequestration sites. Vadose Zone J. 3, 848–857 (2004)

    Article  Google Scholar 

  • Pruess K.: Numerical studies of fluid leakage from a geologic disposal reservoir for CO 2 show self-limiting feedback between fluid flow and heat transfer. Geophys. Res. Lett. 32, L14,404 (2005)

    Article  Google Scholar 

  • Pruess K., Garcia J.: Multiphase flow dynamics during CO 2 injection into saline aquifers. Environ. Geol. 42, 282–295 (2002)

    Article  Google Scholar 

  • Pruess K., Spycher N.: ECO 2N—a fluid property module for the TOUGH2 code for studies of CO 2 storage in saline aquifers. Energy Conv. Manag. 48, 1761–1767 (2007)

    Article  Google Scholar 

  • Pruess K., Garcia J., Kovscek T., Oldenburg C.: Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO 2. Energy 29, 1431–1444 (2004)

    Article  Google Scholar 

  • Roose T., Fowler A.C., Darrah P.R.: A mathematical model of plant nutrient uptake. J. Math. Biol. 42, 347–360 (2001)

    Article  Google Scholar 

  • Saripalli P., McGrail P.: Semi-analytical approaches to modeling deep well injection of CO 2 for geological sequestration. Energy Conv. Manag. 43(2), 185–198 (2002)

    Article  Google Scholar 

  • Shampine L.F., Reichelt M.W.: The MATLAB ODE Suite. SIAM J. Sci. Comp. 18, 1–22 (1997)

    Article  Google Scholar 

  • Shampine L.F., Reichelt M.W., Kierzenka J.A.: Solving index-1 DAEs in MATLAB and Simulink. SIAM J. Sci. Comp. 41, 538–552 (1999)

    Google Scholar 

  • Stauffer, P., Viswanathan, H., Guthrie, G., Pawar, R.: CO 2-PENS: a CO 2 sequestration systems model supporting risk-based decisions. In: Proceeding of CMWR XVI—Computational Methods in Water Resources, Copenhagen, Denmark (2006)

  • Stern N.: Stern Review on the Economics of Climate Change. Cambridge University Press, Cambridge, UK (2006)

    Google Scholar 

  • Theis C.V.: The relationship between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground water storage. Trans. Amer. Geophys. Union 16, 519–524 (1935)

    Google Scholar 

  • Woods, E.G., Comer, A.G.: Saturation and injection pressure for a radial gas storage reservoir. J. Petroleum Tech. pp. 1389–1393, SPE Paper No. 401 (1962)

  • Wu Y.S.: Numerical simulation of single-phase and multiphase non-Darcy flow in porous and fractured reservoirs. Transp. Porous Media 49(2), 1573–1634 (2002)

    Article  Google Scholar 

  • Zhang Y., Oldenburg C.M., Finsterle S., Bodvarsson G.S.: System-level modeling for economic evaluation of geological CO 2 storage in gas reservoirs. Energy Conv. Manag. 48, 1827–1833 (2007)

    Article  Google Scholar 

  • Zhou Q., Birkholzer J.T., Tsang C.F., Rutqvist J.: A method for quick assessment of CO 2 storage capacity in closed and semi-closed saline formations. Int. J. Greenhouse Gas Control 2(4), 626–639 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon A. Mathias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathias, S.A., Hardisty, P.E., Trudell, M.R. et al. Approximate Solutions for Pressure Buildup During CO2 Injection in Brine Aquifers. Transp Porous Med 79, 265–284 (2009). https://doi.org/10.1007/s11242-008-9316-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-008-9316-7

Keywords

Navigation