Skip to main content
Log in

Pressure Buildup During CO2 Injection into a Closed Brine Aquifer

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

CO2 injected into porous formations is accommodated by reduction in the volume of the formation fluid and enlargement of the pore space, through compression of the formation fluids and rock material, respectively. A critical issue is how the resulting pressure buildup will affect the mechanical integrity of the host formation and caprock. Building on an existing approximate solution for formations of infinite radial extent, this article presents an explicit approximate solution for estimating pressure buildup due to injection of CO2 into closed brine aquifers of finite radial extent. The analysis is also applicable for injection into a formation containing multiple wells, in which each well acts as if it were in a quasi-circular closed region. The approximate solution is validated by comparison with vertically averaged results obtained using TOUGH2 with ECO2N (where many of the simplifying assumptions are relaxed), and is shown to be very accurate over wide ranges of the relevant parameter space. The resulting equations for the pressure distribution are explicit, and can be easily implemented within spreadsheet software for estimating CO2 injection capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Formation plan area [L2]

b :

Forchheimer parameter [L−1]

b r :

Relative Forchheimer parameter [-]

c o :

Compressibility of CO2 [M−1 LT2]

c r :

Compressibility of geological formation [M−1 LT2]

c w :

Compressibility of brine [M−1 LT2]

h :

CO2 brine interface elevation [L]

h D  = h/H:

Dimensionless interface elevation [-]

H :

Formation thickness [L]

k :

Permeability [L2]

k r :

Relative permeability [-]

M 0 :

Mass injection rate [MT−1]

p :

Fluid pressure [ML−1 T−2]

p D  = 2π Hρ o k r kp/M0μ o :

Dimensionless pressure [-]

q o :

CO2 flux [LT−1]

qoD = 2π Hr w ρ o q o /M0:

Dimensionless CO2 flux [-]

q w :

Brine flux [LT−1]

qwD = 2π Hr w ρ o q w /M0:

Dimensionless brine flux [-]

r :

Radial distance [L]

r c :

Radial extent of reservoir [L]

r cD  = r c /r w :

Dimensionless radial extent of reservoir [-]

r D  = r/r w :

Dimensionless radius [-]

r w :

Well radius [L]

S r :

Residual brine saturation [-]

t :

Time [T]

\({t_{c{D}}= \alpha r_{c{D}}^2 / 2.246\gamma}\) :

Dimensionless time at which the pressure disturbance meets the reservoir boundary [-]

\({t_{D}=M_0t/2\pi(1-S_{r})\phi Hr_{w}^2\rho_{o}}\) :

Dimensionless time [-]

α = M0μ o (c r  + c w )/2π(1 − S r ) o k r k:

Dimensionless compressibility [-]

β = M0k r kb r b/2π Hr w μ o :

Dimensionless Forchheimer parameter [-]

γ = μ o /k r μ w :

Viscosity ratio [-]

\({\epsilon=(1-S_{r})(c_{o}-c_{w})/(c_{r}+c_{w})}\) :

Normalized fluid compressibility difference [-]

μ o :

Viscosity of CO2 [ML−1 T−1]

μ w :

Viscosity of brine [ML−1 T−1]

ρ o :

Density of CO2 [ML−3]

ρ w :

Density of brine [ML−3]

σ = b r ρ o /ρ w :

Density ratio [-]

\({\phi}\) :

Porosity [-]

References

  • Bear J.: Hydraulics of Groundwater. McGraw-Hill, New York (1979)

    Google Scholar 

  • Bennion, D.B., Bachu, S.: Drainage and imbibition relative permeability relationships for supercritical CO2/brine and H2S/brine systems in intergranular sandstone, carbonate, shale, and annhydrite rocks. SPE Reserv. Eval. Eng. June, 487–496 (2008)

  • Birkholzer J.T., Zhou Q., Tsang C.F.: Large-scale impact of CO2 storage in deep saline aquifers: A sensitivity study on pressure response in stratified systems. Int. J. Greenhouse Gas Control 3, 181–194 (2009). doi:10.1016/j.ijggc.2008.08.002

    Article  Google Scholar 

  • Buckley S.E., Leverett M.C.: Mechanism of fluid displacement in sands. Trans. Am. Inst. Min. Metall. Pet. Eng. 146, 107–116 (1942)

    Google Scholar 

  • Burton, M., Kumar, N., Bryant, S.L.: Time-dependent injectvity during co2 storage in aquifers. In: SPE/DOE Improved Oil Recovery Symposium held in Tulsa, Oklahoma, USA, 19–23 April (2008). SPE 113937

  • Chadwick, A., Hodrien, C., Hovorka, S., Mackay, E., Mathias, S., Lovell, B., Kalaydjian, F., Sweeney, G., Benson, S., Dooley, J., Davidson, C.: The realities of storing carbon dioxide—a response to CO2 storage capacity issues raised by Ehlig-Economides & Economides. Technical report, Published by the European Technology Platform for Zero Emission Fossil Fuel Power Plants (ZEP) (2010). doi:10.1038/npre.2010.4500.1

  • Dake L.P.: Fundamentals of Reservoir Engineering. 17th Impression. Elsevier, Amsterdam (1978)

    Google Scholar 

  • Dentz M., Tartakovsky D.M.: Abrupt-interface solution for carbon dioxide injection into porous media. Transp. Porous Media 79, 15–27 (2009). doi:10.1007/s11242-008-9268-y

    Article  Google Scholar 

  • Ehlig-Economides C.A., Economides M.J.: Sequestering carbon dioxide in a closed underground volume. J. Pet. Sci. Eng. 70, 123–130 (2010). doi:10.1016/j.petrol.2009.11.002

    Article  Google Scholar 

  • Forchheimer P.: Wasserbewegung durch Boden. Z. Ver. Dtsch. Ing 45, 1782–1788 (1901)

    Google Scholar 

  • Gasda S., Nordbotten J.M., Celia M.A.: Vertical equilibrium with sub-scale analytical methods for geological CO2 sequestration. Comput. Geosci. 13(4), 469–481 (2009). doi:10.1007/s10596-009-9138-x

    Article  Google Scholar 

  • Lu C., Lee S.Y., Han W.S., McPherson B.J., Lichtner P.C.: Comments on “abrupt-interface solution for carbon dioxide injection into porous media” by M. Dentz and D. Tartakovsky. Transp. Porous Media 79, 29–37 (2009). doi:10.1007/s11242-009-9362-9

    Article  Google Scholar 

  • Mathias S.A., Todman L.C.: Step-drawdown tests and the Forchheimer equation. Water Resour. Res. 46, W07514 (2010). doi:10.1029/2009WR008635

    Article  Google Scholar 

  • Mathias S.A., Butler A.P., Zhan H.: Approximate solutions for Forchheimer flow to a well. J. Hydraul. Eng. 134(9), 1318–1325 (2008). doi:10.1061/(ASCE)0733-9429(2008)134:9(1318)

    Article  Google Scholar 

  • Mathias S.A., Hardisty P.E., Trudell M.R., Zimmerman R.W.: Screening and selection of sites for CO2 sequestration based on pressure buildup. Int. J. Greenhouse Gas Control 3, 577–585 (2009a). doi:10.1016/j.ijggc.2009.05.002

    Article  Google Scholar 

  • Mathias, S.A., Hardisty, P.E., Trudell, M.R., Zimmerman, R.W.: Erratum to screening and selection of sites for CO2 sequestration based on pressure buildup [Int. J. Greenhouse Gas Control 3(5) (2009) 577–585]. Int. J. Greenhouse Gas Control 4, 108–109 (2009b). doi:10.1016/j.ijggc.2009.11.004

  • Mathias S.A., Hardisty P.E., Trudell M.R., Zimmerman R.W.: Approximate solutions for pressure buildup during CO2 injection in brine aquifers. Transp. Porous Media 79, 265–284 (2009c). doi:10.1007/s11242-008-9316-7

    Article  Google Scholar 

  • Nordbotten J.M., Celia M.A., Bachu S.: Injection and storage of CO2 in deep saline aquifers: analytic solution for CO2 plume evolution during injection. Transp. Porous Media 58, 339–360 (2005). doi:10.1007/s11242-004-0670-9

    Article  Google Scholar 

  • Pruess, K., Oldenburg, C.M., Moridis, G.: TOUGH2 user’s guide, version 2.0. Report LBNL-43134, Lawrence Berkeley National Laboratory, Berkeley, CA, USA (1999)

  • Pruess, K.: ECO2N: A TOUGH2 fluid property module for mixtures of water, NaCl, and CO2. Report LBNL-57952, Lawrence Berkeley National Laboratory, Berkeley, CA, USA (2005)

  • Rutqvist J., Birkholzer J.T., Tsang C.F.: Coupled reservoir—geomechanical analysis of the potential for tensile and shear failure associated with CO2 injection in multilayered reservoir—caprock systems. Int. J. Rock Mech. Min. Sci. 45, 132–143 (2008). doi:10.1016/j.ijrmms.2007.04.006

    Article  Google Scholar 

  • Saripalli P., McGrail P.: Semi-analytical approaches to modeling deep well injection of CO2 for geological sequestration. Energy Convers. Manag. 43(2), 185–198 (2002)

    Article  Google Scholar 

  • van Genuchten M.Th.: A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

    Article  Google Scholar 

  • Vilarrasa V., Bolster D., Dentz M., Olivella S., Carrera J.: Effects of CO2 compressibility on CO2 storage in deep saline aquifers. Transp. Porous Media 85, 619–639 (2010). doi:10.1007/s11242-010-9582-z

    Article  Google Scholar 

  • Welge H.J.: A simplified method for computing oil recovery by gas or water drive. Trans. Am. Inst. Min. Metall. Pet. Eng. 195, 91–98 (1952)

    Google Scholar 

  • Yamamoto, H., Doughty, C.: Investigation of gridding effects for numerical simulations of CO2 geologic sequestration. Int. J. Greenhouse Gas Control (2011). doi:10.1016/j.ijggc.2011.02.007

  • Zhou Q., Birkholzer J., Tsang C., Rutqvist J.: A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations. Int. J. Greenhouse Gas Control 2(4), 626–639 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon A. Mathias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathias, S.A., González Martínez de Miguel, G.J., Thatcher, K.E. et al. Pressure Buildup During CO2 Injection into a Closed Brine Aquifer. Transp Porous Med 89, 383–397 (2011). https://doi.org/10.1007/s11242-011-9776-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-011-9776-z

Keywords

Navigation