Skip to main content
Log in

Particle Detachment Under Velocity Alternation During Suspension Transport in Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Flow of suspensions in porous media with particle capture and detachment under alternate flow rates is discussed. The mathematical model contains the maximum retention concentration function of flow velocity that governs the particle release and is used instead of equation for particle detachment kinetics from the classical filtration model. An analytical model for suspension injection with alternate rates was derived, and a coreflood by suspension with alternate rates was carried out. The modelling and laboratory data are in a good agreement, which validates the modified particle detachment model with the maximum retention function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

Suspended particle concentration, L−3

C :

Dimensionless suspended particle concentration

D :

Erosion front velocity, LT−1

F :

Force, MLT−2

J :

Impedance (normalized pressure drop on the core)

k :

Absolute permeability, L2

L :

Core (reservoir) length, L

m :

Growth coefficient of the normalized pressure drop

p :

Pressure, MT−2L−1

P :

Dimensionless pressure

PVI:

Pore volume injected (dimensionless unit for time t D)

q :

Flow rate via core

r s :

Radius of a particle, L

S :

Dimensionless retained particle concentration

t :

Time, T

U :

Darcy’s velocity in porous media, LT−1

v :

Volume of a single particle

x :

Coordinate, L

β :

Formation damage coefficient

Δ:

Difference between two values (pressure, retained concentration)

\({\varepsilon}\) :

Erosion number (ratio between the drag and normal forces)

χ :

Dimensional filtration coefficient, 1/L

λ:

Dimensionless filtration coefficient

μ :

Dynamic viscosity, ML−1T−1

σ :

Concentration of retained particles, L−3

\({\phi}\) :

Porosity

ψ :

Surface potential, mV

cr:

Critical (for retained concentration and co-ordinate of erosion front)

D:

Dimensionless (for linear co-ordinate and time)

i:

Initial condition (for suspended and retained concentrations)

n:

Normal (for force)

s:

Straining (for retained concentration and formation damage coefficient)

0:

Initial value (for permeability)

0:

inlet value (for suspended concentration)

References

  • Ahfir N.D., Benamar A., Alem A., Wang H.Q.: Influence of internal structure and medium length on transport and deposition of suspended particles: a laboratory study. J. Transp. Porous Media 76, 289–307 (2009)

    Article  Google Scholar 

  • Amix R., Bass A., Whiting A.: Applied Reservoir Engineering. McGraw Hill Book Co, New York (1964)

    Google Scholar 

  • Bailey L., Boek E.S., Jacques S.D.M., Boassen T., Selle O.M., Argillier J.F., Longeron D.G.: Particulate invasion from drilling fluid. J. Soc. Pet. Eng. 5(4), 412–419 (2000)

    Google Scholar 

  • Bedrikovetsky P.G.: Upscaling of stochastic micro model for suspension transport in porous media. J. Transp. Porous Media 75(3), 335–369 (2008)

    Article  Google Scholar 

  • Bedrikovetsky P.G., Marchesin D., Checaira F., Serra A.L., Resende E.: Characterization of deep bed filtration system from laboratory pressure drop measurements. J. Pet. Sci. Eng. 64(3), 167–177 (2001)

    Article  Google Scholar 

  • Bedrikovetsky P., Siqueira F.D., Furtado C., de Souza A.L.S.: Modified particle detachment model for colloidal transport in porous media. J. Transp. Porous Media 86, 353–383 (2010)

    Article  Google Scholar 

  • Bergendahl J., Grasso D.: Prediction of colloid detachment in model porous media: hydrodynamics. J. Chem. Eng. Sci. 55, 1523–1532 (2000)

    Article  Google Scholar 

  • Bradford S.A., Simunek J., Bettahar M., van Genuchten M.Th., Yates S.R.: Modeling colloid attachment, straining, and exclusion in saturated porous media. J. Environ. Sci. Technol. 37, 2242–2250 (2003)

    Article  Google Scholar 

  • Bradford S.A., Torkzaban S.: Colloid transport and retention in unsaturated porous media: a review of interface-, collector-, and pore-scale processes and models. Vadose Zone J. 7(2), 667–681 (2008)

    Article  Google Scholar 

  • Bradford S., Kim H., Haznedaroglu B., Torkzaban S., Walker S.: Coupled factors influencing concentration-dependent colloid transport and retention in saturated porous media. J. Environ. Sci. Technol. 43, 6996–7002 (2009)

    Article  Google Scholar 

  • Chauveteau, G., Nabzar, L., Coste, J-P.: Physics and modelling of permeability damage induced by particle deposition. SPE paper 39463 presented at the SPE International Symposium on Formation Damage Control in Lafayette, Louisiana 18–19 Feb (1998)

  • Chupin O., Saiyouri N., Hicher P.Y.: The effects of filtration on the injection of cement-based grouts in sand columns. J. Transp. Porous Media 72, 227–240 (2008)

    Article  Google Scholar 

  • Civan F.: Reservoir Formation Damage (Fundamentals, Modeling, Assessment, and Mitigation), 2nd ed. Gulf Professional Publishing, Burlington (2007)

    Google Scholar 

  • Civan F.: Non-isothermal permeability impairment by fines migration and deposition in porous media including dispersive transport. J. Transp. Porous Media 85(1), 233–258 (2010)

    Article  Google Scholar 

  • Cortis A., Harter T., Hou L.L., Atwill E.R., Packman A.I., Green P.G.: Transport of Cryptosporidium parvum in porous media: long-term elution experiments and continuous time random walk filtration modeling. J. Water Resour. Res. 42(12), W12S13 (2006)

    Article  Google Scholar 

  • Freitas A.M., Sharma M.M.: Detachment of particles from surfaces: an AFM study. J. Colloid Interface Sci. 233, 73–82 (2001)

    Article  Google Scholar 

  • Gitis V., Rubinstein I., Livshits M., Ziskind G.: Deep-bed filtration model with multistage deposition kinetics. Chem. Eng. J. 163, 78–85 (2010)

    Article  Google Scholar 

  • Gravelle, A., Peysson, Y., Tabary, R., Egerman, P.: Experimental investigation and modelling of colloidal release in porous media. J. Transp. Porous Media. (2011). doi:10.1007/s11242-011-9748-3

  • Guedes R.G., Al-Abduwani F., Bedrikovetsky P., Currie P.: Injectivity decline under multiple particle capture mechanisms. J. Soc. Pet. Eng. SPEJ 14, 477–487 (2009)

    Google Scholar 

  • Herzig J.P., Leclerc D.M., Le Goff P.: Flow of suspensions through porous media—application to deep filtration. J. Ind. Eng. Chem. 65(5), 8–35 (1970)

    Article  Google Scholar 

  • Hunter R.J.: Foundations of Colloid Science. Oxford University Press, Oxford, NY (2001)

    Google Scholar 

  • Ilina T., Panfilov M., Buès M., Panfilova I.: A pseudo two-phase model for colloid facilitated transport in porous media. J. Transp. Porous Media 71(3), 311–329 (2008)

    Article  Google Scholar 

  • Ju B., Fan T., Wang X., Qiu X.: A new simulation framework for predicting the onset and effects of fines mobilization. J. Transp. Porous Media 68(2), 265–283 (2007)

    Article  Google Scholar 

  • Khilar K., Fogler S.: Migration of Fines in Porous Media. Kluwer Academic Publishers, Dordrecht/ London/Boston (1998)

    Google Scholar 

  • Kocaefe D., Bui T.R., Waite P.: 2D transient filtration model for aluminium. J. Appl. Math. Model. 33, 4013–4030 (2009)

    Article  Google Scholar 

  • Landau L.D., Lifshitz E.M.: Fluid Mechanics (Course on Theoretical Physics, vol. 6), 2nd edn. Pergamon Press, Oxford (1987)

    Google Scholar 

  • Lefevre D., Comas-Cardona S., Binetruy C., Krawczak P.: Modelling the flow of particle-filled resin through a fibrous perform in liquid composite moulding technologies. J. Compos. A 38, 2154–2163 (2007)

    Article  Google Scholar 

  • Lever A., Dawe R.A.: Water sensitivity and migration of fines in the Hopeman sandstone. J. Pet. Geol. 7(1), 97–108 (1984)

    Article  Google Scholar 

  • Li X., Lin C.L., Miller J.D., Johnson W.P.: Role of grain-to-grain contacts on profiles of retained colloids in porous media in the presence of an energy barrier to deposition. J. Environ. Sci. Technol. 40(12), 3769–3774 (2006)

    Article  Google Scholar 

  • Lin H.-K., Prydko L.P., Walker S., Zandi R.: Attachment and detachment rate distributions in deep-bed filtration. Phys. Rev. E 79(4), 046321 (2009)

    Article  Google Scholar 

  • Massoudieh A., Ginn T.R.: Colloid-facilitated contaminant transport in unsaturated porous media, Chap. 8. In: Hanrahan, G. (eds) Modelling of Pollutants in Complex Environmental Systems, vol. VI, ILM Publications, Hertfordshire, Glensdale (2010)

    Google Scholar 

  • Mays D., Hunt J.: Hydrodynamic aspects of particle clogging in porous media. J. Environ. Sci. Technol. 39(2), 577–584 (2005)

    Article  Google Scholar 

  • Miranda, R.M., Underdown, D.R.: Laboratory measurement of critical rate: a novel approach for quantifying fines migration problems. SPE paper 25432 presented at the Production Operations Symposium held in Oklahoma City, OK, Mar 21–23 (1993)

  • Nabzar, L., Chauveteau, G., Roque, C.: A new model for formation damage by particle retention. SPE paper 31119 presented at the SPE International Symposium on Formation Damage Control in Lafayette, Louisiana, 14–15 Feb (1996)

  • Noubactep C., Care S.: Dimensioning metallic iron beds for efficient contaminant removal. Chem. Eng. J. 163, 454–460 (2010)

    Article  Google Scholar 

  • Ochi J., Vernoux J.-F.: Permeability decrease in sandstone reservoirs by fluid injection. Hydrodynamic and chemical effects. J. Hydrol. 208, 237–248 (1998)

    Article  Google Scholar 

  • Panfilov M., Stepanyants Y., Panfilova I.: Mechanisms of particle transport acceleration in porous media. J. Transp. Porous Media 74(1), 49–71 (2008)

    Article  Google Scholar 

  • Pang S., Sharma M.M.: A model for predicting injectivity decline in water-injection wells. (SPE paper 28489). J. SPEFE 12(3), 194–201 (1997)

    Google Scholar 

  • Payatakes A.C., Tien C., Turian R.M.: A new model for granular porous media. I. Model formulation. AIChE J. 19(1), 58–76 (1973)

    Article  Google Scholar 

  • Payatakes A.S., Rajagopalan R., Tien C.: Application of porous medium models to the study of deep bed filtration. Can. J. Chem. Eng. 52(6), 722–731 (1974)

    Article  Google Scholar 

  • Rahman, S.S., Arshad, A., Chen, H.: Prediction of critical condition for fines migration in petroleum reservoirs. SPE paper 28760 presented at the SPE Asia Pacific Oil and Gas Conference, Melbourne, Australia, 7–10 Nov (1994)

  • Richards T., Neretnieks I.: Filtering of clay colloids in bentonite detritus material. J. Chem. Eng. Technol. 33(8), 1303–1310 (2010)

    Article  Google Scholar 

  • Rousseau D., Hadi L., Nabzar L.: Injectivity decline from produced water re-injection : new insight on in-depth particle-deposition mechanisms. SPE Prod. Oper. 23(4), 525–531 (2008)

    Google Scholar 

  • Schijven J.F., Hassanizadeh S.M.: Removal of viruses by soil passage: overview of modelling processes, and parameters. Crit. Rev. Environ. Sci. Technol. 30(1), 49–127 (2000)

    Article  Google Scholar 

  • Shapiro A.A.: Elliptic equation for random walks. Application to transport in microporous media. Phys. A Stat. Mech. Appl. 375(1), 81–96 (2007)

    Article  Google Scholar 

  • Sharma M.M., Yortsos Y.C.: Transport of particulate suspensions in porous media: model formulation. AIChE J. 33(13), 1636–1643 (1987)

    Article  Google Scholar 

  • Sharma M.M., Yortsos Y.C.: A network model for deep bed filtration processes. AIChE J. 33(13), 1644–1653 (1987)

    Article  Google Scholar 

  • Sharma M.M., Yortsos Y.C.: Fines migration in porous media. AIChE J. 33(13), 1654–1662 (1987)

    Article  Google Scholar 

  • Torkzaban S., Kim H., Simunek J., Bradford S.: Hysteresis of colloid retention and release in saturated porous media during transients in solution chemistry. J. Environ. Sci. Technol. 44, 1662–1669 (2010)

    Article  Google Scholar 

  • Tufenkji N.: Colloid and microbe migration in granular experiments: a discussion of modelling methods, chap. 5. In: Frimmel, F.H., Kammer, F., Flemming, F-C. (eds) Colloidal Transport in Porous Media, pp. 119–142. Springer-Verlag, Berlin (2007)

    Chapter  Google Scholar 

  • Tufenkji N., Elimelech M.: Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. J. Environ. Sci. Technol. 38, 529–536 (2004)

    Article  Google Scholar 

  • Wong R.C.K., Mettananda D.C.A.: Permeability reduction in Qishn sandstone specimens due to particle suspension injection. J. Transp. Porous Media 81, 105–122 (2010)

    Article  Google Scholar 

  • Yuan H., Shapiro A.: Modeling non-Fickian transport and hyperexponential deposition for deep bed filtration. Chem. Eng. J. 162(3), 974–988 (2010)

    Article  Google Scholar 

  • Yuan H., Shapiro A.: A mathematical model for non-monotonic deposition profiles in deep bed filtration systems. Chem. Eng. J. 166, 105–115 (2011)

    Article  Google Scholar 

  • Zhou J., Zheng X., Flury M., Lin G.: Permeability changes during remediation of an aquifer affected by sea-water intrusion: a laboratory column study. J. Hydrol. 376, 557–566 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Bedrikovetsky.

Additional information

Dedication: The article is dedicated to memory of Vladimir Markovich Entov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bedrikovetsky, P., Zeinijahromi, A., Siqueira, F.D. et al. Particle Detachment Under Velocity Alternation During Suspension Transport in Porous Media. Transp Porous Med 91, 173–197 (2012). https://doi.org/10.1007/s11242-011-9839-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-011-9839-1

Keywords

Navigation