Skip to main content
Log in

Water Vapor Adsorption in Porous Building Materials: Experimental Measurement and Theoretical Analysis

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

An experimental and theoretical analysis of the water vapor adsorption in several types of porous building materials is presented. For the measurement of adsorption isotherms, a DVS-Advantage water sorption device is used. The experimental data is analyzed using theoretical formulas based on the BET, BSB, BDDT, and FHH isotherms, assuming a mono as well as multi-layer water vapor adsorption. The BSB equation is found to provide a good approximation for the relative humidities below 0.6–0.7, whereas the FHH equation shows a sufficient accuracy for the relative humidities above 0.4–0.5. Based on a combination of BSB and FHH isotherms, a semi-empirical formula is proposed that allows one to obtain a very accurate approximation of experimental data for all analyzed materials and all values of the relative humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

c :

BET constant (–)

C s :

Surface concentration (mol m−3)

\({C_{\rm s}^{{\rm sat}}}\) :

saturation surface concentration (mol m−3)

D :

Fractal dimension (–)

H a :

Molar heat of adsorption (J mol−1  K−1)

H c :

Molar heat of condensation/vaporization (J mol−1 K−1)

k :

Fitting parameter in BSB isotherm (–)

K :

Fitting parameter in FHH isotherm (–)

n :

Fitting parameter in BDDT isotherm (–)

R :

Universal gas constant (J mol−1 K−1)

σ :

Decay parameter of surface forces with distance (–)

T :

Absolute temperature (K)

θ :

Relative humidity (–)

References

  • Adamson A.W.: Physical Chemistry of Surfaces, 5th edn. Wiley, New York (1990)

    Google Scholar 

  • Brocken H.J.P.: Moisture transport in brick masonry: The gray area between bricks. Eindhoven University of Technology, Eindhoven (1998)

    Google Scholar 

  • Brunauer S.: The Adsorption of Gases and Vapors. Princeton University Press, Princeton (1943)

    Google Scholar 

  • Brunauer S., Emmet P.H., Teller W.E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  Google Scholar 

  • Brunauer S., Deming L.S., Deming E.W., Teller E.: On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62, 1723–1732 (1940)

    Article  Google Scholar 

  • Brunauer S., Skalny J., Bodor E.E.: Adsorption on Nonporous Solids. J. Colloid Interface Sci. 30, 546–552 (1969)

    Article  Google Scholar 

  • Burnett, D., Garcia, A.R., Naderi, M., Acharya, M.: Vapour sorption properties of building materials using gravimetric sorption instrumentation—an overview. Application Note 104, Surface Measurement Systems (2009)

  • Carmeliet J., Roals S.: Determination of the isothermal moisture transport properties of porous building materials. J. Therm. Envel. Build. Sci. 24, 183–210 (2001)

    Article  Google Scholar 

  • Cerofolini G.F., Meda L.: Clustering and melting in multilayer equilibrium adsorption. J. Colloid Interface Sci. 202, 104–123 (1998)

    Article  Google Scholar 

  • Černý R., Rovnaníková P.: Transport Processes in Concrete. Spon Press, London (2002)

    Google Scholar 

  • Everett D.H.: Adsorption hysteresis. In: Flood, E.A. (eds) The Solid Gas Interface, vol. 2, Chap. 36, Dekker, New York (1967)

    Google Scholar 

  • Frenkel J.: Kinetic Theory of Fluids. Oxford University Press, Oxford (1946)

    Google Scholar 

  • Garbalińska H., Kowalski S.J., Staszak M.: Moisture transfer between unsaturated cement mortar and ambient air. Transp. Porous Media 85, 79–96 (2010)

    Article  Google Scholar 

  • Gregg S.J., Sing K.S.W.: Adsorption, Surface Area, Porosity, 2nd ed. Academic Press, London (1982)

    Google Scholar 

  • Halsey G.: Physical adsorption on non-uniform surfaces. J. Chem. Phys. 16, 931–937 (1948)

    Article  Google Scholar 

  • Hansen K.K.: Sorption Isotherms—A Catalogue. Technical report 162/86, TU Denmark, Lyngby (1986)

    Google Scholar 

  • Häupl P., Fechner H.: Hygric material properties of porous building materials. J. Build. Phys. 26(3), 259–284 (2003)

    Article  Google Scholar 

  • Hill T.L.: Thermodynamics of adsorption. Trans. Faraday Soc. 47, 376–380 (1951)

    Article  Google Scholar 

  • Jiřičková M., Černý R.: Effect of hydrophilic admixtures on moisture and heat transport and storage parameters of mineral wool. Constr. Build. Mater. 20(6), 425–434 (2006)

    Article  Google Scholar 

  • Kumaran M.K.: A~thermal and moisture property database for common building and insulation materials. ASHRAE Trans. 112, 1–13 (2006)

    Google Scholar 

  • Lozano A.L., Cherblanc F., Bénet J.C.: Water evaporation versus condensation in a hygroscopic soil. Transp. Porous Media 80, 209–222 (2009)

    Article  Google Scholar 

  • Miniotaite, R.: Sorption processes and moisture deformations in building materials. In: Carmeliet, J., Hens, H.S.L.C., Vermeir, G. (eds.) Research in Building Physics, pp. 189–196. Swets and Zeitlinger, Lisse (2003)

  • Pavlík Z., Michálek P., Pavlíková M., Kopecká I., Maxová I., Černý R.: Water and salt transport and storage properties of Mšené sandstone. Constr. Build. Mater. 22(8), 1736–1748 (2008)

    Article  Google Scholar 

  • Peuhkuri, R.: Quantifying time dependent moisture storage and transport properties. In: Carmeliet, J., Hens, H.S.L.C., Vermeir, G. (eds.) Research in Building Physics, pp. 43–51. Swets and Zeitlinger, Lisse (2003)

  • Pfeifer P., Cole W.M.: Fractals in surface science—scattering and thermodynamics of adsorbed films 2. New J. Chem. 14, 221–232 (1990)

    Google Scholar 

  • Pfeifer P., Wu Y.J., Cole M.W., Krim J.: Multilayer adsorption on a fractally rough surface. Phys. Rev. Lett. 62, 1997–2000 (1989)

    Article  Google Scholar 

  • Philip J.R.: Kinetics of capillary condensation in wedge-shaped pores. J. Chem. Phys. 41, 911–916 (1964)

    Article  Google Scholar 

  • Philip J.R.: Unitary approach to capillary condensation and adsorption. J. Chem. Phys. 66, 5069–5075 (1977)

    Article  Google Scholar 

  • Richards, R.F., Burch, D.M., Thomas, W.C.: Water vapor sorption measurements of common building materials. ASHRAE Transactions 98(1) (1992)

  • Shahraeeni E., Or D.: Pore scale analysis of evaporation and condensation dynamics in porous media. Langmuir 26(17), 13924–13936 (2010)

    Article  Google Scholar 

  • Timmermann E.O.: Multilayer sorption parameters: BET or GAB values?. Colloid Surf. A 220, 235–260 (2003)

    Article  Google Scholar 

  • Tuller M., Or D., Dudley L.M.: Adsorption and capillary condensation in porous media: liquid retention and interfacial configurations in angular pores. Water Resour. Res. 35, 1949–1964 (1999)

    Article  Google Scholar 

  • Vejmelková E., Padevět P., Černý R.: Effect of cracks on hygric and thermal characteristics of concrete. Bauphysik 30, 438–444 (2008)

    Article  Google Scholar 

  • Vejmelková E., Keppert M., Grzeszczyk S., Skaliński B., Černý R.: Properties of self-compacting concrete mixtures containing metakaolin and blast furnace slag. Constr. Build. Mater. 25, 1325–1331 (2011)

    Article  Google Scholar 

  • Xi Y., Bažant Z.P., Jennings H.M.: Moisture diffusion in cementitious materials. Adv. Cem. Based Mater 1, 248–257 (1994)

    Article  Google Scholar 

  • Zuda L., Bayer P., Rovnaník P., Černý R.: Mechanical and hydric properties of alkali-activated aluminosilicate composite with electrical porcelain aggregates. Cem. Concr. Comp. 30, 266–273 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Černý.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlík, Z., Žumár, J., Medved, I. et al. Water Vapor Adsorption in Porous Building Materials: Experimental Measurement and Theoretical Analysis. Transp Porous Med 91, 939–954 (2012). https://doi.org/10.1007/s11242-011-9884-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-011-9884-9

Keywords

Navigation