Skip to main content

Advertisement

Log in

CO2 Plume Evolution and Pressure Buildup of Large-scale CO2 Injection into Saline Aquifers in Sanzhao Depression, Songliao Basin, China

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Large-scale injection of carbon dioxide (CO2) into saline aquifers in sedimentary basins is a promising approach to mitigate global climate change. Songliao Basin, a large continental clastic sedimentary basin in northeastern China, is one of the great potential candidate sites for future CO2 storage in China. In this paper, a three-dimensional CO2 storage model was built to evaluate the CO2 plume evolution and pressure buildup of large-scale CO2 injection into the saline aquifers in the Sanzhao Depression of the Songliao Basin. CO2 was injected into the aquifers through five wells, each with an annual injection rate of 3 Mt over 50 years. The results show that the clastic Yaojia formation at the depth between 900 and 1,600 m with thickness of 150 m might be the favorable layer to store a considerable amount of CO2, and the overlying Nenjiang formation could ensure long-term CO2 containment. The relative low permeability of the upper part of the Yaojia formation seems to play a role of a secondary seal on carbon storage. In current injection scenario, CO2 plume migrates into the formations in the southeast of the depression, which could have potential risk of polluting the freshwater. Therefore, the injection site should stay far away from the southeast of the depression. Moreover, it is very crucial to investigate the permeability distribution of the Yaojia formation because it significantly dominates the CO2 plume migration. After only 6 months of injection, the pressure buildup at each injection site is affected by pressure interference from neighboring sites. The maximum pressure buildup in the formations is 7.8 MPa after 50 years of injection, and it can even reach 10.5 MPa when the injection layers are with lower permeability. The maximum pressure buildup at the bottom of the Nenjiang formation is 6.7 MPa. The gradient of maximum limited formation pressure is about 18 MPa/km, which might cause fractures to open in the formations of the Sanzhao Depression. Continuous injection of CO2 for 50 years may not cause damage to the caprock even when the lower permeability occurred in the upper part of the Yaojia formation. The safety of CO2 storage will be enhanced if the upper part of the storage formation has lower permeability than the lower part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachu S.: Sequestration of CO2 in geological media in response to climate change: road map for site selection using the transform of the geological space into the CO2 phase space. Energy Convers. Manage. 43, 87–102 (2002). doi:10.1016/S0196-8904(01)00009-7

    Article  Google Scholar 

  • Bachu S.: CO2 storage in geological media: role, means, status and barriers to deployment. Prog. Energ. Combust. 34(2), 254–273 (2008). doi:10.1016/j.pecs.2007.10.001

    Article  Google Scholar 

  • Bachu S., Adams J.J.: Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution. Energy Convers. Manage. 44(20), 3151–3175 (2003). doi:10.1016/S0196-8904(03)00101-8

    Article  Google Scholar 

  • Bachu S., Bennion D.B.: Experimental assessment of brine and/or CO2 leakage through well cements at reservoir conditions. Int. J. Greenh. Gas Control 3(4), 494–501 (2009). doi:10.1016/j.ijggc.2008.11.002

    Article  Google Scholar 

  • Birkholzer Q., Zhou J.T.: Basin-scale hydrogeologic impacts of CO2 storage: capacity and regulatory implications. Int. J. Greenh. Gas Control 3(6), 745–756 (2009). doi:10.1016/j.ijggc.2009.07.002

    Article  Google Scholar 

  • Chen W., Le Nindre Y.-M., Xu R., Allier D., Teng F., Domptail K., Xiang X., Guillon L., Chen J., Huang L.: CCS scenarios optimization by spatial multi-criteria analysis: application to multiple source sink matching in Hebei province. Int. J. Greenh. Gas Control 4(2), 341–350 (2010). doi:10.1016/j.ijggc.2009.09.001

    Article  Google Scholar 

  • Cheng J.M., McIntosh J.C., Xie X.N., Jiao J.J.: Hydrochemistry of formation water with implication to diagenetic reactions in Sanzhao depression and Qijia-gulong depression of Songliao Basin, China. J. Geochem. Explor. 88(1–3), 86–90 (2006). doi:10.1016/j.gexplo.2005.08.091

    Article  Google Scholar 

  • Corey A.T.: The interrelation between gas and oil relative permeabilities. Producers Monthly 19(1), 38–41 (1954)

    Google Scholar 

  • Doughty C.: Modeling geologic storage of carbon dioxide: comparison of non-hysteretic and hysteretic characteristic curves. Energy Convers. Manage. 48(6), 1768–1781 (2007). doi:10.1016/j.enconman.2007.01.022

    Article  Google Scholar 

  • Doughty C.: Investigation of CO2 Plume Behavior for a Large-Scale Pilot Test of Geologic Carbon Storage in a Saline Formation. Transp. Porous Media 82(1), 49–76 (2010). doi:10.1007/s11242-009-9396-z

    Article  Google Scholar 

  • Doughty C., Freifeld B.M., Trautz R.C.: Site characterization for CO2 geologic storage and vice versa: the Frio brine pilot, Texas, USA as a case study. Environ. Geol. 54(8), 1635–1656 (2008). doi:10.1007/s00254-007-0942-0

    Article  Google Scholar 

  • Flett M., Gurton R., Weir G.: Heterogeneous saline formations for carbon dioxide disposal: impact of varying heterogeneity on containment and trapping. J. Petrol. Sci. Eng. 57(1–2), 106–118 (2007). doi:10.1016/j.petrol.2006.08.016

    Article  Google Scholar 

  • Flett M., Brantjes J., Gurton R., McKenna J., Tankersley T., Trupp M.: Subsurface development of CO2 disposal for the Gorgon Project. In: Gale, J., Herzog, H., Braitsch, J. (eds) Greenhouse Gas Control Technologies 9, vol. 1. Energy Procedia, vol.1, pp. 3031–3038. Elsevier, Amsterdam (2009)

    Google Scholar 

  • Gao, R.Q., Cai, X.Y.: Oil–gas forming conditions and distribution rules of Songliao Basin. Petroleum Industry Press, Beijing (1997) (in Chinese)

  • Green C.P., Ennis-King J.: Effect of vertical heterogeneity on long-term migration of CO2 in saline formations. Transp. Porous Media 82(1), 31–47 (2009). doi:10.1007/s11242-009-9498-7

    Article  Google Scholar 

  • He S., Middleton M., Tang Z.H.: Characteristics and origin of underpressure system in the Shiwu Fault Depression, south-east Songliao Basin, China. Basin Res. 12(2), 147–158 (2000). doi:10.1046/j.1365-2117.2000.00118.x

    Article  Google Scholar 

  • Holloway S.: Underground sequestration of carbon dioxide–a viable greenhouse gas mitigation option. Energy 30(11–12), 2318–2333 (2005). doi:10.1016/j.energy.2003.10.023

    Article  Google Scholar 

  • Iding M., Ringrose P.: Evaluating the impact of fractures on the performance of the In Salah CO2 storage site. Int. J. Greenh. Gas Control 4(2), 242–248 (2010). doi:10.1016/j.ijggc.2009.10.016

    Article  Google Scholar 

  • IPCC (ed.): Carbon dioxide capture and storage. Cambridge University, Cambridge (2005)

  • Kempka T., Kuhn M., Class H., Frykman P., Kopp A., Nielsen C.M., Probst P.: Modelling of CO2 arrival time at Ketzin—Part I. Int. J. Greenh. Gas Control 4(6), 1007–1015 (2010). doi:10.1016/j.ijggc.2010.07.005

    Article  Google Scholar 

  • Lengler U., De Lucia M., Kuhn M.: The impact of heterogeneity on the distribution of CO2: numerical simulation of CO2 storage at Ketzin. Int. J. Greenh. Gas Control 4(6), 1016–1025 (2010). doi:10.1016/j.ijggc.2010.07.004

    Article  Google Scholar 

  • Li, X.C., Liu, Y.F., Bai, B., Fang, Z.M.: Ranking and screening of CO2 saline aquifer storage zones in China. Chin. J. Rock Mech. Eng. 25(5), 963–968 (2006).doi:1000-6915(2006)25:5<963:ZGSBXS>2.0.TX;2-D (in Chinese with English abstract)

  • Liang X., Reiner D., Gibbins J., Li J.: Assessing the value of CO2 capture ready in new-build pulverised coal-fired power plants in China. Int. J. Greenh. Gas Control 3(6), 787–792 (2009). doi:10.1016/j.ijggc.2009.09.008

    Article  Google Scholar 

  • Maldal T., Tappel I.M.: CO2 underground storage for Snøhvit gas field development. Energy 29(9–10), 1403–1411 (2004). doi:10.1016/j.energy.2004.03.074

    Article  Google Scholar 

  • Mathias S.A., Hardisty P.E., Trudell M.R., Zimmerman R.W.: Approximate solutions for pressure buildup during CO2 injection in brine aquifers. Transp. Porous Media 79(2), 265–284 (2009). doi:10.1007/s11242-008-9316-7

    Article  Google Scholar 

  • Mathias S., GonzálezMartínezde Miguel G., Thatcher K., Zimmerman R.: Pressure buildup during CO2 injection into a closed brine aquifer. Transp. Porous Media 89(3), 383–397 (2011). doi:10.1007/s11242-011-9776-z

    Article  Google Scholar 

  • Meng K.C., Williams R.H., Celia M.A.: Opportunities for low-cost CO2 storage demonstration projects in China. Energ. Policy 35(4), 2368–2378 (2007). doi:10.1016/j.enpol.2006.08.016

    Article  Google Scholar 

  • Michael K., Golab A., Shulakova V., Ennis-King J., Allinson G., Sharma S., Aiken T.: Geological storage of CO2 in saline aquifers—A review of the experience from existing storage operations. Int. J. Greenh. Gas Control 4(4), 659–667 (2010). doi:10.1016/j.ijggc.2009.12.011

    Article  Google Scholar 

  • Nicot J.: Evaluation of large-scale CO2 storage on fresh-water sections of aquifers: an example from the Texas Gulf Coast Basin. Int. J. Greenh. Gas Control 2(4), 582–593 (2008). doi:10.1016/j.ijggc.2008.03.004

    Article  Google Scholar 

  • Nordbotten J.M., Kavetski D., Celia M.A., Bachu S.: Model for CO2 leakage including multiple geological layers and multiple leaky wells. Environ. Sci. Technol. 43(3), 743–749 (2009). doi:10.1021/es801135v

    Article  Google Scholar 

  • Person M., Banerjee A., Rupp J., Medina C., Lichtner P., Gable C., Pawar R., Celia M., McIntosh J., Bense V.: Assessment of basin-scale hydrologic impacts of CO2 sequestration, Illinois basin. Int. J. Greenh. Gas Control 4(5), 840–854 (2010). doi:10.1016/j.ijggc.2010.04.004

    Article  Google Scholar 

  • Pruess K.: Numerical studies of fluid leakage from a geologic disposal reservoir for CO2 show self-limiting feedback between fluid flow and heat transfer. Geophys. Res. Lett. 32(14), L14404 (2005). doi:L1440410.1029/2005gl023250

    Article  Google Scholar 

  • Pruess K.: On CO2 fluid flow and heat transfer behavior in the subsurface, following leakage from a geologic storage reservoir. Environ. Geol. 54(8), 1677–1686 (2008). doi:10.1007/s00254-007-0945-x

    Article  Google Scholar 

  • Pruess K., Spycher N.: ECO2N—a fluid property module for the TOUGH2 code for studies of CO2 storage in saline aquifers. Energy Convers. Manage. 48(6), 1761–1767 (2007). doi:10.1016/j.enconman.2007.01.016

    Article  Google Scholar 

  • Pruess, K., Oldenburg, C., Moridis, G.: TOUGH2 User’s guide. Report LBNL-43134. Lawrence Berkeley Laboratory, Berkeley, CA, USA (1999)

  • Rutqvist J., Tsang C.F.: A study of caprock hydromechanical changes associated with CO2-injection into a brine formation. Environ. Geol. 42(2–3), 296–305 (2002). doi:10.1007/s00254-001-0499-2

    Article  Google Scholar 

  • Rutqvist J., Birkholzer J., Cappa F., Tsang C.: Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Convers. Manage. 48(6), 1798–1807 (2007). doi:10.1016/j.enconman.2007.01.021

    Article  Google Scholar 

  • Rutqvist J., Birkholzer J.T., Tsang C.F.: Coupled reservoir-geomechanical analysis of the potential for tensile and shear failure associated with CO2 injection in multilayered reservoir-caprock systems. Int. J. Rock Mech. Min. Sci. 45(2), 132–143 (2008). doi:10.1016/j.ijrmms.2007.04.006

    Article  Google Scholar 

  • Rutqvist J., Vasco D.W., Myer L.: Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria. Int. J. Greenh. Gas Control 4(2), 225–230 (2010). doi:10.1016/j.ijggc.2009.10.017

    Article  Google Scholar 

  • Torp T.: Demonstrating storage of CO2 in geological reservoirs: the Sleipner and SACS projects. Energy 29(9–10), 1361–1369 (2004). doi:10.1016/j.energy.2004.03.104

    Article  Google Scholar 

  • Van Genuchten M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)

    Article  Google Scholar 

  • Vilarrasa V., Bolster D., Dentz M., Olivella S., Carrera J.: Effects of CO2 compressibility on CO2 storage in deep saline aquifers. Transp. Porous Media 85(2), 619–639 (2010). doi:10.1007/s11242-010-9582-z

    Article  Google Scholar 

  • Viswanathan H.S., Pawar R.J., Stauffer P.H., Kaszuba J.P., Carey J.W., Olsen S.C., Keating G.N., Kavetski D., Guthrie G.D.: Development of a hybrid process and system model for the assessment of wellbore leakage at a geologic CO2 sequestration site. Environ. Sci. Technol. 42(19), 7280–7286 (2008). doi:10.1021/es800417x

    Article  Google Scholar 

  • Yamamoto H., Zhang K., Karasaki K., Marui A., Uehara H., Nishikawa N.: Numerical investigation concerning the impact of CO2 geologic storage on regional groundwater flow. Int. J. Greenh. Gas Control 3(5), 586–599 (2009). doi:10.1016/j.ijggc.2009.04.007

    Article  Google Scholar 

  • Yu H., Zhou G., Fan W., Ye J.: Predicted CO2 enhanced coalbed methane recovery and CO2 sequestration in China. Int. J. Coal Geol. 71(2–3), 345–357 (2007). doi:10.1016/j.coal.2006.10.002

    Article  Google Scholar 

  • Zhang, K., Wu, Y.S., Pruess, K.: User’s guide for TOUGH2-MP—a massively parallel version of the TOUGH2 code. Lawrence Berkeley National Laboratory, Report LBNL-315E, May 2008

  • Zhang W., Li Y., Xu T., Cheng H., Zheng Y., Xiong P.: Long-term variations of CO2 trapped in different mechanisms in deep saline formations: a case study of the Songliao Basin, China. Int. J. Greenh. Gas Control 3(2), 161–180 (2009). doi:10.1016/j.ijggc.2008.07.007

    Article  Google Scholar 

  • Zhou Y.S., Littke R.: Numerical simulation of the thermal maturation, oil generation and migration in the Songliao Basin, Northeastern China. Mar. Pet. Geol. 16(8), 771–792 (1999). doi:10.1016/S0264-8172(99)00043-4

    Article  Google Scholar 

  • Zhou Q., Birkholzer J.T., Mehnert E., Lin Y.-F., Zhang K.: Modeling basin- and plume-scale processes of CO2 storage for full-scale deployment. Ground Water 48(4), 494–514 (2010). doi:10.1111/j.1745-6584.2009.00657.x

    Article  Google Scholar 

  • Zhou D., Zhao Z., Liao J., Sun Z.: A preliminary assessment on CO2 storage capacity in the Pearl River Mouth Basin offshore Guangdong, China. Int. J. Greenh. Gas Control 5(2), 308–317 (2011). doi:10.1016/j.ijggc.2010.09.011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmei Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, R., Cheng, J. & Zhang, K. CO2 Plume Evolution and Pressure Buildup of Large-scale CO2 Injection into Saline Aquifers in Sanzhao Depression, Songliao Basin, China. Transp Porous Med 95, 407–424 (2012). https://doi.org/10.1007/s11242-012-0052-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-012-0052-7

Keywords

Navigation