Skip to main content
Log in

Calculation of Karst Conduit Flow Using Dye Tracing Experiments

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The goal of this paper is to develop a procedure of calculating karst conduit fluxes using dye tracing results. The Green’s function for the initial value problem is adapted by localized dilution at the juncture of conduit flows. Then the model is employed to simulate three breakthrough curves measured near Emerald Sink, Northwest Florida. The simulation of the tracing experiment from Cheryl Sink to Emerald Sink yields a recharge of 1.49 m 3/s at Emerald Sink. For the oxbow that connects Cheryl Sink with Emerald Sink, the major shortcut and the long side convey about 90 and 10% of water, respectively. The simulations of other two experiments yield a consistent value for the flow from a tributary conduit into the main conduit 200 m downstream of Emerald Sink, being 1.9–2.0 m 3/ s. The proposed theory is novel and robust in that the peak arrival time, time width, and amplitude of the measured curves are fully utilized, and the resulting water fluxes are independent of conduit radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birk S., Geyer T., Liedl R., Sauter M.: Process-based interpretation of tracer tests in carbonate aquifers. Ground Water 43(3), 381–388 (2005). doi:10.1111/j.1745-6584.2005.0033.x

    Article  Google Scholar 

  • Davies, G.J., Kincaid, T.R., Hazlett, T.J., Connolly, K.A., Jablonski, J.M.: Groundwater tracing as a means to collect data for groundwater model design and calibration. In: GSA 2002 Denver Annual Meeting, 27–30 October, Paper No. 101-7 (2002)

  • Davies, G.J., Kincaid, T.R., Hazlett, T.J., Loper, D.E., DeHan, R., McKinlay, C.: Why do quantitative groundwater tracing? Lessons and examples from the Woodville Karst Plain of North Florida. In: GSA 2004 Denver Annual Meeting, 7–10 November, Paper No. 49-22 (2004)

  • Field M.S.: The QTRACER program for tracer-breakthrough curve analysis for karst and fractured-rock aquifers. US Environmental Protection Agency, Washington, DC (2002)

    Google Scholar 

  • Field M.S., Li G.: Inversion for the input history of a dye tracing experiment. J. Cave Karst Stud. 73(1), 16–20 (2011). doi:10.4311/jcks2010es0143

    Article  Google Scholar 

  • Field M.S., Pinsky P.F.: A two-region nonequilibrium model for solute transport in solution conduits in karstic aquifers. J. Contam. Hydrol. 44(3–4), 329–351 (2000)

    Article  Google Scholar 

  • Fischer H., List J., Koh C., Imberger J., Brooks N.: Mixing in Inland and Coastal Waters. Academic Press, New York (1979)

    Google Scholar 

  • Geyer T., Birk S., Licha T., Liedl R., Sauter M.: Multitracer test approach to characterize reactive transport in karst aquifers. Ground Water 45(1), 36–45 (2007). doi:10.1111/j.1745-6584.2006.00261.x

    Article  Google Scholar 

  • Goldscheider N.: A new quantitative interpretation of the long-tail and plateau-like breakthrough curves from tracer tests in the artesian karst aquifer of Stuttgart, Germany. Hydrogeol. J. 16, 1311–1317 (2008). doi:10.1007/s10040-008-0307-0

    Article  Google Scholar 

  • Göppert N., Goldscheider N.: Solute and colloid transport in karst conduits under low- and high-flow conditions. Ground Water 46(1), 61–68 (2008). doi:10.1111/j.1745-6584.2007.00373.x

    Google Scholar 

  • Hazlett-Kincaid, Inc.: Hydrogeological characterization and modeling of the Woodville Karst Plain, North Florida. Report of Investigations (2007)

  • Karst Environmental Services, Inc.: KES Projects-Discharge Measurement. http://www.karstenvironmental.com/projects_dm.html . Accessed 01 Jan 2011

  • Kreft A., Zuber A.: Physical meaning of dispersion equation and its solution for different initial and boundary conditions. Chem. Eng. Sci. 33(11), 1471–1480 (1978)

    Article  Google Scholar 

  • Li, G.: Laboratory simulation of solute transport and retention in a karst aquifer. Ph. D Dissertation, The Florida State University (2004)

  • Li G., Loper D.E.: Transport, dilution, and dispersion of contaminant in a leaky karst conduit. Transp. Porous Media 88, 31–43 (2011). doi:10.1007/s11242-011-9721-1

    Article  Google Scholar 

  • Li G., Loper D.E., Kung R.: Contaminant sequestration in karstic aquifers: Experiments and quantification. Water Resour. Res. 44, W02429 (2008). doi:10.1029/2006WR005797

    Article  Google Scholar 

  • NWFWMD.: Spring Inventory of the Wakulla and St. Marks Rivers: NWFWMD Water Resources Special Report 06-03. http://www.nwfwmd.state.fl.us/rmd/springs/Wakulla_StMarks/documents/data.htm . Accessed 4 February 2012

  • Strauss W.A.: Partial differential equations: an introduction. Wiley, New York (1992)

    Google Scholar 

  • Taylor G.I.: The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. A 223, 446–468 (1954)

    Article  Google Scholar 

  • Toride N., Leij F.J., van Genuchten M.T.: A comprehensive set of analytical solutions for nonequilibrium solute transport with first-order decay and zero-order production. Water Resour. Res. 29(7), 2167–2182 (1993)

    Article  Google Scholar 

  • Toride, N., Leij, F.J., van Genuchten, M.T.: The CXTFIT code for estimating transport parameters from the laboratory or field tracer experiments, version 2.0. US Salinity Laboratory Research Report 137. US Salinity Laboratory, Riverside (1995), p. 121

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangquan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G. Calculation of Karst Conduit Flow Using Dye Tracing Experiments. Transp Porous Med 95, 551–562 (2012). https://doi.org/10.1007/s11242-012-0061-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-012-0061-6

Keywords

Navigation