Skip to main content
Log in

Dispersion Stability and Transport of Nanohybrids through Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Single-walled carbon nanotube-silica nanohybrid particles are a very promising material that could be used for enhanced oil recovery because of their interfacial activity. To demonstrate the basic principle, aqueous nanohybrid particle dispersions were evaluated by looking at the effect of pH, surfactant, and polymer. The results showed that pH did not have significant effect on the dispersion stability of nanohybrid particles. Although surfactant could improve the dispersion stability, it reduced the interfacial activity of the nanohybrid particles, causing them to stay in the aqueous phase. The best nanohybrid particle dispersion stability was found upon polymer addition, where the dispersions were stable for more than a week even at low polymer concentration (50 ppm). One-dimensional sand-pack studies were performed to evaluate the flow of the nanohybrid particles through porous media. The results showed that most of the nanohybrid particles (>99%) could pass through a column packed with glass beads while a measurable fraction of the particles was retained in the column packed with crushed Berea. When the columns contained a residual saturation of decane, additional nanohybrid particles were retained at the oil/water interface in both glass beads and crushed Berea sand media. The sand pack studies showed that not only can the nanohybrid particles flow through porous media but also about half of the particles injected will go the O/W interface when the porous medium contains a residual saturation of hydrocarbon, where they could be used to support a catalytic conversion of components of the oil in reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C/C 0 :

Normalized particle concentration observed at the column effluent (–)

CMC:

The critical micelle concentration (mol/103 cm3)

nC60 :

Fullerene (–)

D :

Specific energy band of Raman spectra, in the frequency of 1,300 cm−1

d :

Particle size of the packing materials (mm)

G :

Specific energy band of Raman spectra, in the frequency of 1,580–1,590 cm−1

G/D :

Raman spectra band ratio indicating the carbon impurities and imperfection (–)

kΩ:

Resistivity unit for the turbidity measurement of dispersed particles (kΩ)

mD:

Millidarcy, unit of permeability (10−15 m2 or 1 × 10−3 μm2)

NaDDBS:

Sodium dodecyl benzene sulfonate, anionic surfactant (–)

O/W:

Oil and water interface, or oil-in-water emulsion (–)

PV:

Pore volume of the packed column (–)

SHDPDS:

Sodium hexadecyl diphenyl oxide disulfonate (–)

SWNT:

Single-walled carbon nanotube (–)

W/O:

Water-in-oil emulsion (–)

Φ:

Column diameter (cm)

References

  • Alvarez W.E., Pompeo F., Herrera J.E., Balzano L., Resasco D.E.: Characterization of single-walled nanotubes (SWNT) produced by CO disproportionation on Co–Mo catalyst. Chem. Mater. 14(4), 1853–1858 (2002)

    Article  Google Scholar 

  • Bandyopadhyaya R., Nativ-Roth E., Regev O., Yerushalmi-Rozen R.: Stabilization of individual carbon nanotubes in aqueous solutions. Nano Lett. 2(1), 25–28 (2002)

    Article  Google Scholar 

  • Baez, J., Villamizar, L., Lohateeraparp, P., Shiau, B.J., Resasco, D.E., Harwell, J.H.: Propagation of nano- hybrid particles through porous media: impact of particle characteristics and polymeric dispersants. In: Fall 2011 National Meeting/Exposition. American Chemical Society, Denver, Colorado, August 28–September 1 (2011)

  • Binks B.P., Murakami R., Armes S.P., Fujii S.: Effects of pH and salt concentration on oil–in–water emulsions stabilized solely by nanocomposite microgel particles. Langmuir 22(5), 2050–2057 (2006)

    Article  Google Scholar 

  • Binks B.P., Desforges A.: Synergistic stabilization of emulsions by a mixture of surface-active nanoparticles and surfactant. Langmuir 23(3), 1098–1106 (2007)

    Article  Google Scholar 

  • Brant J., Lecoanet H., Weisner M.R.: Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J. Nanopart. Res. 7(4), 545–553 (2005a)

    Article  Google Scholar 

  • Brant J., Lecoanet H., Hotze M., Weisner M.R.: Comparison of electrokinetic properties of colloidal fullerenes (n−C60) formed using two procedures. Environ. Sci. Technol. 39(17), 6343–6351 (2005b)

    Article  Google Scholar 

  • Cheng X., Kan A.T., Tomson M.B.: Study of C60 transport in porous media and the effect of sorbed C60 on naphthalene transport. J. Mater. Res. 20(12), 3244–3254 (2005)

    Article  Google Scholar 

  • Cobos S., Carvalho M.S., Alvarado V.: Flow of oil–water emulsion to constricted capillary. Int. J. Multiphase Flow 35(6), 507–515 (2009)

    Article  Google Scholar 

  • Ding Y., Wen D.: Particle migration in a flow of nanoparticle suspensions. Powder Technol. 149(2–3), 84–92 (2005)

    Article  Google Scholar 

  • Drexler S., Faria F., Ruiz M.P., Harwell J.H., Resasco D.E.: Amphiphilic nanohybrid catalysts for reactions at the water/oil interface in subsurface reservoirs. Energy Fuels 26(4), 2231–2241 (2012)

    Article  Google Scholar 

  • Espinasse B., Hotze E.M., Weisner M.R.: Transport and retention of colloidal aggregates of C60 in porous media: effects of organic macromolecules, ionic composition, and preparation method. Environ. Sci. Technol. 41(21), 7396–7402 (2007)

    Article  Google Scholar 

  • Espinosa, D., Caldelas, F., Johnston, K., Bryant, S.L., Huh, C.: Nanoparticle-stabilized supercritical CO2 foams for potential mobility control applications. SPE 129925. In: SPE Improved Oil Recovery Symposium, Tulsa, Oklahoma, USA, 26–28 April (2010). doi:10.2118/129925-MS

  • Gilani, S.: Adsorption of surfactants on single walled carbon nanotubes. MS Thesis, University of Oklahoma, Norman, Oklahoma (2008)

  • Hobbie E.K., Bauer B.J., Stephens J., Becker M.L., McGuiggan P., Hudson S.D., Wang H.: Colloidal particles coated and stabilized by DNA-wrapped carbon nanotubes. Langmuir 21(23), 10284–10287 (2005)

    Article  Google Scholar 

  • Kanel S.R., Goswami R.R., Clement T.P., Barnett M.O., Zhao D.: Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media. Environ. Sci. Technol. 42(3), 896–900 (2008)

    Article  Google Scholar 

  • Kanj, M.Y., Funk, J.J., Al-Yousif, Z.: Nanofluid coreflood experiments in the ARAB-D. SPE 126161. In: SPE Saudi Arabia Section Technical Symposium and Exhibition, Alkohobar, Saudi Arabia, 9–11 May (2009). doi:10.2118/126161-MS

  • Lecoanet H.F., Bottero J.Y., Wiesner M.R.: Laboratory assessment of the mobility of nanomaterials in porous media. Environ. Sci. Technol. 38(19), 5164–5169 (2004)

    Article  Google Scholar 

  • Matarredona O., Rhoads H., Li Z., Harwell J.H., Balzano L., Resasco D.E.: Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. J. Phys. Chem. 107(48), 13357–13367 (2003)

    Article  Google Scholar 

  • Moore V.C., Strano M.S., Haroz E.H., Hauge R.H., Smalley R.E.: Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 3(10), 1379–1382 (2003)

    Article  Google Scholar 

  • Napper D.H.: Polymeric Stabilization of Colloidal Dispersions. Academic Press, Orlando (1993)

    Google Scholar 

  • O’Connell M.J., Boul P., Ericson L.M., Huffman C., Wang Y., Haroz E., Kuper C., Tour J., Ausman K.D., Smalley R.E.: Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett. 342(3–4), 265–271 (2001)

    Article  Google Scholar 

  • Pelley A.J., Tufenkji N.: Effect of particle size and natural organic matter on the migration of nano and microscale latex particles in saturated porous media. J. Colloid Interface Sci. 321(1), 74–83 (2008)

    Article  Google Scholar 

  • Resasco D.E., Alvarez W.E., Pompeo F., Balzano L., Herrera J.E., Kitiyanan B., Borgna A.: A scalable process for production of single-walled carbon nanotubes (SWNT) by catalytic disproportionation of CO on a solid catalyst. J. Nanopart. Res. 4(1–2), 131–136 (2002)

    Article  Google Scholar 

  • Resasco, D.E., Herrera, J.E.: Structural characterization of single-walled carbon nanotubes. In: Nalwa, H.S. (ed.) Encyclopedia of Nanoscience and Nanotechnology, vol. 10, pp. 125–147. American Scientific Publishers, California (2004)

  • Rodríguez, E., Roberts, M.R., Yu, H., Huh, C., Bryant, S.L.: Enhanced migration of surface-treated nanoparticles in sedimentary rocks. SPE 124418. In: SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana, USA, 4–7 October (2009). doi:10.2118/124418-MS.

  • Saleh N., Kim H.Y., Phenrat T., Matyjaszewski K., Tilton R.D., Lowry G.V.: Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environ. Sci. Technol. 42(9), 3349–3355 (2008)

    Article  Google Scholar 

  • Schrick B., Hydutsky B.W., Blough J.L., Mallouk T.E.: Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem. Mater. 16(11), 2187–2193 (2004)

    Article  Google Scholar 

  • Shen M., Resasco D.E.: Emulsions stabilized by carbon nanotube-silica nanohybrids. Langmuir 25(18), 10843–10851 (2009)

    Article  Google Scholar 

  • Shiau, B.J., Harwell, J., Lohateeraparp, P., Dinh, A.V., Roberts, B.L., Hsu, T., Anwuri, O.: Designing alcohol-free surfactant chemical flood for oil recovery. SPE 129254. In: SPE EOR Conference at Oil & Gas West Asia, Muscat, Oman, 11–13 April (2010). doi:10.2118/129254-MS.

  • Wang Y., Li Y., Fortner J.D., Hughes J.B., Abriola L.M., Pennell K.D.: Transport and retention of nanoscale C60 aggregates in water-saturated porous media. Environ. Sci. Technol. 42(10), 3588–3594 (2008a)

    Article  Google Scholar 

  • Wang Y., Li Y., Pennell K.D.: Influence of electrolyte species and concentration on the aggregation and transport of fullerene nanoparticles in quartz sands. Environ. Toxicol. Chem. 27(9), 1860–1867 (2008b)

    Article  Google Scholar 

  • Yu, H., Kotsmar, C., Yoon, K.Y., Ingram, D.R., Johnston, K.P., Bryant, S.L., Huh, C.: Transport and retention of aqueous dispersions of paramagnetic nanoparticles in reservoir rock. SPE 129887. In: SPE Improved Oil Recovery Symposium, Tulsa, Oklahoma, USA, 26–28 April (2010). doi:10.2118/129887-MS

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bor Jier Shiau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villamizar, L.C., Lohateeraparp, P., Harwell, J.H. et al. Dispersion Stability and Transport of Nanohybrids through Porous Media. Transp Porous Med 96, 63–81 (2013). https://doi.org/10.1007/s11242-012-0073-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-012-0073-2

Keywords

Navigation