Skip to main content
Log in

Measurement and Correlation of Pressure Drop Characteristics for Air Flow Through Sintered Metal Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Sintered metal porous media are currently used to replace conventional orifices as restrictors in air-bearing systems. The flow properties in porous media are generally approximated by Darcy and Forchheimer regimes in different flow regions. In this study, an ISO expanded expression is proven defective when it is used to represent flow properties through porous media under slight pressure drops (\({<}10\) kPa). A modified Forchheimer equation is therefore developed to correlate the pressure drop with flow rate, including compressibility and inertial effects. Experimental and theoretical investigations on pressure drop characteristics are conducted with a series of metal-sintered porous media. Permeability is first determined in a strict Darcy region with \(Re<0.1\), followed by the inertial coefficient with \(Re>0.1\), rather than determining these two simultaneously. The theoretical mass flow rate in terms of the modified Forchheimer equation provides close approximations to the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(A\) :

Cross-sectional area \((\hbox {m}^{2})\)

\(b\) :

Critical pressure ratio

\(C\) :

Sonic conductance \((\hbox {m}^{3}\, \hbox {Pa}^{-1}\, \hbox {s}^{-1})\)

\(D\) :

Diameter of the resistance (m)

\(f\) :

Friction factor

\(G\) :

Mass flow rate (kg/s)

\(K\) :

Permeability \((\hbox {m}^{2})\)

\(L\) :

Length of the resistance (m)

\(m\) :

Mass of the resistance (kg)

\(P\) :

Absolute pressure (Pa)

\(P_{1}\) :

Upstream pressure (Pa)

\(P_{2}\) :

Downstream pressure (Pa)

\(R\) :

Gas constant (J/(kg K))

\(Re\) :

Reynolds number

\(T\) :

Temperature (K)

\(v\) :

Flow velocity (m/s)

\(x\) :

Displacement along the length direction (m)

\(\beta \) :

Inertial coefficient

\(\gamma \) :

Density of steel alloy \((\hbox {kg/m}^{3})\)

\(\varepsilon \) :

Porosity

\(\mu \) :

Air viscosity (Pa s)

\(\rho \) :

Air density \((\hbox {kg/m}^{3})\)

\(\rho _{0}\) :

Air density under normal condition \((\hbox {kg/m}^{3})\)

References

  • Almeida, M.P., Andrade Jr, J.S., Buldyrev, S.V., Cavalcante, F.S.A., Stanley, H.E., Suki, B.: Fluid flow through ramified structures. Phys. Rev. E. 60, 5486–5494 (1999)

    Article  Google Scholar 

  • Amano, K., Yoshimoto, S., Miyatake, M., Hirayama, T.: Basic investigation of noncontact transportation system for large TFT-LCD glass sheet used in CCD inspection section. Precis. Eng. 35, 58–64 (2011)

    Article  Google Scholar 

  • Andrade Jr, J.S., Alencar, A.M., Almeida, M.P., Mendes Filho, J., Buldyrev, S.V., Zapperi, S.: Asymmetric flow in symmetric branched structures. Phys. Rev. Lett. 81, 926–929 (1998)

    Article  Google Scholar 

  • Andrade, J.S., Costa, U.M.S., Almeida, M.P., Makse, H.A., Stanley, H.E.: Inertial effects on fluid flow through disordered porous media. Phys. Rev. Lett. 82(26), 5249–5252 (1999)

    Article  Google Scholar 

  • Antohe, B.V., Lage, J.L., Price, D.C., Weber, R.M.: Experimental determination of permeability and inertia coefficients of mechanically compressed aluminum porous matrices. J. Fluids Eng. 119, 404–412 (1997)

    Article  Google Scholar 

  • Beavers, G.S., Sparrow, E.M.: Non-Darcy flow through fibrous porous media. J. Appl. Mech. 36(4), 711–714 (1969)

    Article  Google Scholar 

  • Beavers, G.S., Sparrow, E.M., Rodenz, D.E.: Influence of bed size on the flow characteristics and porosity of randomly packed beds of spheres. Appl. Mech. J. 40, 655–660 (1973)

    Article  Google Scholar 

  • Belforte, G., Raparelli, T., Viktorov, V., Trivella, A.: Feeding system of aerostatic bearings with porous media. In: Sixth JFPS International Symposium on Fluid Power, Tsukuba, pp. 126–131. Japan (2005)

  • Belforte, G., Raparelli, T., Viktorov, V., Trivella, A.: Metal woven wire cloth feeding system for gas bearings. Tribol. Int. 42, 600–608 (2009)

    Article  Google Scholar 

  • Bogdanov, I.I., Mourzenko, V.V., Thovert, J.-F., Adler, P.M.: Pressure drawdown well tests in fractured porous media. Water Resour. Res. 39, 1021 (2003)

    Google Scholar 

  • Boomsma, K., Poulikakos, D.: The effects of compression and pore size variations on the liquid flow characteristics in metal foams. J. Fluids Eng. 124, 263–272 (2002)

    Article  Google Scholar 

  • Dukhan, N., Patel, K.: Entrance and exit effects for fluid flow in metal foam. In: AIP Conference Proceedings, vol. 1254, pp. 299–304. Montecatini, Italy (2010)

  • Dukhan, N.: Correlations for the pressure drop for flow through metal foam. Exp. Fluids. 41, 665–672 (2006)

    Article  Google Scholar 

  • Dukhan, N., Minjeur II, C.A.: A two-permeability approach for assessing flow properties in metal foam. J. Porous Mat. 18, 417–424 (2011)

    Article  Google Scholar 

  • Dukhan, N., Patel, K.: Effect of sample’s length on flow properties of open-cell metal foam and pressure-drop correlations. J. Porous Mat. 18, 655–665 (2011)

    Article  Google Scholar 

  • Dukhan, N., Ali, M.: Effect of confining wall on properties of gas flow through metal foam: an experimental study. Transp. Porous Med. 91, 225–237 (2012)

    Article  Google Scholar 

  • Ergun, S.: Fluid flow through packed columns. Chem. Eng. Prog. 48(2), 89–94 (1952)

    Google Scholar 

  • ISO/CD 6358: Pneumatic fluid power—components using compressible fluid—Determination of flow rate charateristics (1989)

  • Jin, L.W., Kai, C.L.: Pressure drop and friction factor of steady and oscillating flows in open-cell porous media. Transp. Porous Med. 72, 37–52 (2008)

    Article  Google Scholar 

  • Kim, T., Lu, T.J.: Pressure drop through anisotropic porous mediumlike cylinder bundles in turbulent flow regime. J. Fluids Eng. 130, 104501 (2008)

    Article  Google Scholar 

  • Lage, J.L., Antohe, B.V., Nield, D.A.: Two types of nonlinear pressure-drop versus flow-rate relation observed for saturated porous media. J. Fluids Eng. 119, 700–706 (1997)

    Article  Google Scholar 

  • Liu, J.F., Wu, W.T., Chiu, W.C., Hsieh, W.H.: Measurement and correlation of friction characteristic of flow through foam matrixes. Exp. Therm. Fluid Sci. 30, 329–336 (2006)

    Article  Google Scholar 

  • Macdonald, I.F., EI-Sayed, M.S., Mow, K., Dullien, F.A.L.: Flow through porous media-the Ergun Equation Revisited. Ind. Eng. Chem. Fundam. 18(3), 199–208 (1979)

    Article  Google Scholar 

  • Mancin, S., Zilio, C., Cavallini, A., Rossetto, L.: Pressure drop during air flow in aluminum foams. Int. J. Heat Mass Tran. 53, 3121–3130 (2010)

    Article  Google Scholar 

  • Mauroy, B., Filoche, M., Andrade Jr, J.S., Sapoval, B.: Interplay between geometry and flow distribution in an air way tree. Phys. Rev. Lett. 90, 148101 (2003)

    Article  Google Scholar 

  • Medraj, M., Baril, E., Loya, V., Lefebvre, L.P.: The effect of microstructure on the permeability of metallic foams. J. Mater. Sci. 42(12), 4372–4383 (2007)

    Article  Google Scholar 

  • Montillet, A., Akkari, E., Comiti, J.: About a correlating equation for predicting pressure drops through packed beds of spheres in a large range of Reynolds numbers. Chem. Eng. Process 46, 329–333 (2007)

    Article  Google Scholar 

  • Morais, A.F., Seybold, H., Herrmann, H.J., Andrade Jr, J.S.: Non-Newtonian fluid flow through three-dimensional disordered porous media. Phys. Rev. Lett. 103, 194502 (2009)

    Article  Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)

    Google Scholar 

  • Oiwa, N., Masuda, M., Hirayama, T., Matsuoka, T., Yabe, H.: Deformation and flying height orbit of glass sheets on aerostatic porous bearing guides. Tribol. Int. 48, 2–7 (2012)

    Article  Google Scholar 

  • Oneyama, N., Zhang, H. P., Senoo, M.: Study and suggestions on flow-rate characteristics of pneumatic components. In: Proceedings of the Fourth International Symposium on Power Transmission and Control, pp. 326–331, Wuhan, China (2003)

  • Rojas, S., Koplik, J.: Nonlinear flow in porous media. Phys. Rev. E 58, 4776–4782 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant No. 51205174), the Natural Science Foundation of Ningbo City (Grant No. 2013A610049), and the Science and Technology Service Demonstration Project of Ningbo City (Grant No. 201201F1000041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, W., Li, X., Liu, F. et al. Measurement and Correlation of Pressure Drop Characteristics for Air Flow Through Sintered Metal Porous Media. Transp Porous Med 101, 53–67 (2014). https://doi.org/10.1007/s11242-013-0230-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-013-0230-2

Keywords

Navigation