Skip to main content
Log in

Stress-jump and Continuity Interface Conditions for a Cylinder Embedded in a Porous Medium

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The selection of interface boundary conditions between porous-medium and clear-fluid regions is very important for the wide range of engineering applications. In this paper, the difference between two common types of fluid flow interfacial conditions between clear fluid and porous medium is analyzed in detail. These two types of fluid flow interfacial condition are stress-jump and stress-continuity conditions. The effects of porosity on these types of interface condition are studied. The results are presented for different Reynolds numbers in the range 1–40, porosity equal to 0.4 and 0.8 and Darcy number \(Da=5\times 10^{- 4}\). In this study, the Darcy–Brinkmann–Forchheimer model is used to model the momentum transfer in the porous medium. The dimensionless governing equations consisting of continuity and momentum equations are discretized using control volume technique. The set of algebraic discretized coupled equations is solved using SIMPLE algorithm. It was found that for high porosity (i.e., \(\varepsilon =0.8)\), there is a large difference between two boundary conditions for the velocity profile along the horizontal and vertical directions in the porous layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(C\) :

Dimensionless coefficient

\(d\) :

Thickness of porous layer (m)

\(D\) :

Diameter (m)

\(Da\) :

Darcy number, \(Da=K/D^{2}\)

\(F\) :

Force (N)

\(K \) :

Permeability \((\hbox {m}^{2})\)

\(p \) :

Pressure (Pa)

\(r \) :

Radial coordinate (m)

\(R\) :

Cylinder radius (m)

\(Re\) :

Reynolds number, \(Re=U_\infty D/\nu \)

t:

Time (s)

\(u, v \) :

Velocity components in the \(r \) and \(\theta \) directions, respectively \((\hbox {m\,s}^{-1})\)

\(\beta \) :

Stress-jump parameter

\(\beta _1 \) :

Stress-jump parameter related to inertia

\(\delta \) :

Dimensionless porous layer thickness, \(\delta =d/D\)

\(\varepsilon \) :

Porosity

\(\mu \) :

Dynamic viscosity of the fluid \(\left( {\hbox {kg}\,\hbox {m}^{- 1}\, \hbox {s}^{- 1}} \right) \)

\(\nu \) :

Kinematic viscosity of the fluid \((\hbox {m}^{2}\,\hbox {s}^{-1})\)

\(\theta \) :

Cross-radial coordinate

\(\rho \) :

Fluid density \((\hbox {kg\,m}^{-3})\)

eff:

Effective

f:

Fluid

F:

Forchheimer

p:

Pressure

s:

Solid

v:

Viscous

\(\infty \) :

Free stream

1:

Clear-fluid domain

2:

Porous domain

References

  • Alazmi, B., Vafai, K.: Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int. J. Heat Mass Transf. 44, 1735–1749 (2001)

    Article  Google Scholar 

  • Beavers, G., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  • Bhattacharyya, S., Dhinakaran, S., Khalili, A.: Fluid motion around and through a porous cylinder. Chem. Eng. Sci. 61, 4451–4461 (2006)

    Article  Google Scholar 

  • Chen, X.B., Yu, P., Winoto, S.H., Low, H.T.: Numerical analysis for the flow past a porous trapezoidal-cylinder based on the stress-jump interfacial-conditions. Int. J. Numer. Methods Heat Fluid Flow 19, 223–241 (2009)

    Article  Google Scholar 

  • Dehghan, M., Tajik Jamal-Abad, M., Rashidi, S.: Analytical interpretation of the local thermal non-equilibrium condition of porous media imbedded in tube heat exchangers. Energy Convers. Manag. 85, 264–271 (2014)

    Article  Google Scholar 

  • Dehghan, M., Rahmani, Y., Domiri Ganji, D., Saedodin, S., Valipour, M.S., Rashidi, S.: Convection-eradiation heat transfer in solar heat exchangers filled with a porous medium: Homotopy perturbation method versus numerical analysis. Renew. Energy 74, 448–455 (2015)

    Article  Google Scholar 

  • Ehrhardt, M.: An introduction to fluid–porous interface coupling. http://www.math.uni-wuppertal.de (2000). Accessed Oct 2000

  • Ellahi, R., Riaz, A., Nadeem, S., Ali, M.: Peristaltic flow of Carreau fluid in a rectangular duct through a porous medium. Math. Prob. Eng. 2012, 1–24 (2012)

    Article  Google Scholar 

  • Ellahi, R., Aziz, R., Zeeshan, A.: Non-Newtonian nanofluids flow through a porous medium between two coaxial cylinders with heat transfer and variable viscosity. J. Porous Media 16, 205–216 (2013)

    Article  Google Scholar 

  • Forchheimer, P.: Wasserbewegung durch Boden. Zeitschrift des Vereines Deutscher Ingenieure 45, 1782–1788 (1901)

    Google Scholar 

  • Jazebi, F., Rashidi, A.: An automated procedure for selecting project manager in construction firms. J. Civil Eng. Manag. 19, 97–106 (2013)

    Article  Google Scholar 

  • Khan, A.Afsar, Ellahi, R., Vafai, K.: Peristaltic transport of Jeffrey fluid with variable viscosity through a porous medium in an asymmetric channel. Adv. Math. Phys. 2012, 1–15 (2012). doi:10.1155/2012/169642

    Article  Google Scholar 

  • Kuznetsov, A.V.: Influence of the stress jump condition at the porous-medium/clear fluid interface on a flow at a porous wall. Int. Commun. Heat Mass transf. 24, 401–410 (1997)

    Article  Google Scholar 

  • Leal, L.G., Acrivos, A.: The effect of base bleed on the steady separated flow past bluff objects. J. Fluid Mech. 39, 735–752 (1970)

    Article  Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media, 4th edn. Springer, New York (2013)

    Book  Google Scholar 

  • Ochoa-Tapia, J.A.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid I, theoretical development. Int. J. Heat Mass Transf. 38, 2635–2646 (1995a)

    Article  Google Scholar 

  • Ochoa-Tapia, J.A.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid II, comparison with experiment. Int. J. Heat Mass Transf. 38, 2647–2655 (1995b)

    Article  Google Scholar 

  • Ochoa-Tapia, J.A., Whitaker, S.: Momentum jump condition at the boundary between a porous medium and a homogeneous fluid: inertial effect. J. Porous Media 1, 201–217 (1998)

    Google Scholar 

  • Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere, New York (1980)

    Google Scholar 

  • Rashidi, A., Jazebi, F., Brilakis, I.: Neuro-fuzzy genetic system for selection of construction project managers. J. Constr. Eng. Manag. 137, 17–29 (2011)

    Article  Google Scholar 

  • Rashidi, S., Tamayol, A., Valipour, M.S., Shokri, N.: Fluid flow and forced convection heat transfer around a solid cylinder wrapped with a porous ring. Int. J. Heat Mass Transf. 63, 91–100 (2013)

    Article  Google Scholar 

  • Rashidi, S., Bovand, M., Pop, I., Valipour, M.S.: Numerical simulation of heat transfer from a porous diamond cylinder. Transp. Porous Media 102, 207–225 (2014a)

    Article  Google Scholar 

  • Rashidi, S., Masoodi, R., Bovand, M., Valipour, M.S.: Numerical study of flow around and through a porous diamond cylinder with different apex angels. Int. J. Numer. Methods Heat Fluid Flow 24, 1504–1518 (2014b)

    Article  Google Scholar 

  • Sheikholeslami, M., Ellahi, R., Ashorynejad, H.R., Domairry, G., Hayat, T.: Effects of heat transfer in flow of nanofluids over a permeable stretching wall in a porous medium. J. Comput. Theor. Nanosci. 11, 486–496 (2014)

    Article  Google Scholar 

  • Tan, H., Pillai, K.M.: Finite element implementation of stress-jump and stress-continuity conditions at porous-medium, clear-fluid interface. Comput. Fluids 38, 1118–1131 (2009)

    Article  Google Scholar 

  • Torfi, F., Rashidi, A.: Selection of project managers in construction firms using analytic hierarchy process (AHP) and fuzzy topsis: a case study. J. Constr. Dev. Ctries. 16, 69–89 (2011)

    Google Scholar 

  • Vafai, K., Kim, S.J.: Fluid mechanics of the interface region between a porous medium and a fluid layer—an exact solution. Int. J. Heat Fluid Flow 11, 254–256 (1990)

    Article  Google Scholar 

  • Valdés-Parada, F.J., Goyeau, B., Alberto Ochoa-Tapia, J.: Jump momentum boundary condition at a fluid-porous dividing surface: derivation of the closure problem. Chem. Eng. Sci. 62, 4025–4039 (2007)

    Article  Google Scholar 

  • Valdés-Parada, F.J., Alvarez-Ramirez, J., Goyeau, B., Alberto Ochoa-Tapia, J.: Jump condition for diffusive and convective mass transfer between a porous medium and a fluid involving adsorption and chemical reaction. Transp. Porous Media 78, 459–476 (2009)

    Article  Google Scholar 

  • Valdés-Parada, F.J., Aguilar-Madera, C.G., Alberto Ochoa-Tapia, J., Goyeau, B.: Velocity and stress jump conditions between a porous medium and a fluid. Adv. Water Resour. 62, 327–339 (2013)

    Article  Google Scholar 

  • Valipour, M.S., Masoodi, R., Rashidi, S., Bovand, M., Mirhosseini, M.: A numerical study of convection around a square porous cylinder using \(\text{ Al }_{2}\text{ O }_{3}\)-\(\text{ H }_{2}\text{ O }\) Nanofluid. Therm. Sci. 18, 1305–1314 (2014a)

    Article  Google Scholar 

  • Valipour, M.S., Rashidi, S., Masoodi, R.: Magnetodydrodynamics flow and heat transfer around a solid cylinder wrapped with a porous ring. ASME J. Heat Transf. 136, 062601 (2014b). doi:10.1115/1.4026371

    Article  Google Scholar 

  • Valipour, M.S., Rashidi, S., Bovand, M., Masoodi, R.: Numerical modeling of fluid flow around and through a porous cylinder of square-diamond cross-section. Eur. J. Mech. B Fluids 46, 74–81 (2014c)

    Article  Google Scholar 

  • White, F.M.: Fluid Mechanics, 6th edn. McGraw Hill, NewYork (2009)

    Google Scholar 

  • Zeeshan, A., Ellahi, R.: Series solutions of nonlinear partial differential equations with slip boundary conditions for non-Newtonian MHD fluid in porous space. J. Appl. Math. Inf. Sci. 7, 253–261 (2013)

    Article  Google Scholar 

  • Yu, P., Zeng, Y., Lee, Tong S., Chen, Xiao B., Low, Hong T.: Steady flow around and through a permeable circular cylinder. Comput. Fluids 42, 1–12 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Pop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashidi, S., Nouri-Borujerdi, A., Valipour, M.S. et al. Stress-jump and Continuity Interface Conditions for a Cylinder Embedded in a Porous Medium. Transp Porous Med 107, 171–186 (2015). https://doi.org/10.1007/s11242-014-0431-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0431-3

Keywords

Navigation