Skip to main content
Log in

Modeling of Particle Migration in Porous Media: Application to Soil Suffusion

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The suffusion phenomenon occurs when fine soil particles are detached by seepage flow and transported away from the matrix. This process is one of the main causes of failure of hydraulic structures and road embankments. This study aimed to build a numerical model for simulating the suffusion within a porous medium. This model combines a flow law and an erosion equation related to the evolution of soil porosity. In addition, the dispersion and the deposition kinetics of eroded particles were combined with detachability process. The equations describe the evolution of the instantaneous concentration of the fluidized solid and the variation of eroded mass. Sensitivity analysis allows highlighting the influence of the different parameters on the suffusion, particularly that deposition kinetics starts acting only below a given hydraulic gradient and beyond a sample length. The simulation results indicate that the suffusion process is strongly related to hydraulic conditions, physical soil characteristics and pore water chemicals. The adjustment of numerical results with experimental data from laboratory tests provides a good agreement. This model is devoted to investigate conditions leading hydraulic works to avoid suffering suffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

C :

Volume concentration of eroded particles (volume fraction)

\(C_k\) :

Constant in Kozeny–Carman equation

\(C_\mathrm{me}\) :

Maximum erodibility coefficient

D :

Dispersion coefficient (\(\hbox {m}^2\,\hbox {s}^{-1}\))

\(f_0\) :

Initial fine fraction

\(f_\mathrm{max}\) :

Maximum erodible mass fraction

gradH:

Hydraulic gradient (m m\(^{-1}\))

H :

Hydraulic head (m)

j :

Mass flow rate from erosion, per unit volume (\(\hbox {kg\,m}^{-3}\,\hbox {s}^{-1}\))

k :

Hydraulic permeability (m s\(^{-1}\))

K :

Intrinsic permeability (\(\hbox {m}^{2}\))

\(k_{d0}\) :

Initial deposition kinetic coefficient (\(\hbox {s}^{-1}\))

\(m_0\) :

Initial fine mass (mg)

m :

Eroded cumulative mass (mg)

\(m/m_0\) :

Eroded mass fraction (relative cumulative mass)

q :

Darcy velocity (\(\hbox {m\,s}^{-1}\))

\(R_\mathrm{fine}\) :

Volume fraction of erodible fine fraction

u :

Pore velocity (m s\(^{-1}\))

\(u_\mathrm{fs}\) :

Velocity of fluidized solid (eroded fine particles) (m s\(^{-1}\))

\(\alpha \) :

Dispersivity coefficient (m)

\( \gamma _w\) :

Specific weight of water (\(\hbox {N\,m}^{-3}\))

\(\mu \) :

Instantaneous dynamic viscosity of water (\(\hbox {kg\,m}^{-1}\,\hbox {s}^{-1}\))

\( \mu _0\) :

Initial dynamic viscosity of water (\(\hbox {kg\,m}^{-1}\,\hbox {s}^{-1}\))

\(\rho _\mathrm{f}\) :

Fluid density (\(\hbox {kg\,m}^{-3}\))

\(\rho _\mathrm{s}\) :

Solid density (\(\hbox {kg\,m}^{-3}\))

\(\lambda \) :

Empirical coefficient of erosion (\(\hbox {m}^{-1}\))

\(\phi \) :

Instantaneous porosity of soil

\(\phi _0\) :

Initial porosity of soil

\(\Delta t\) :

Time increment

\(\Delta x\) :

Space increment

References

  • Ahfir, N., Benamar, A., Alem, A., Wang, H.Q.: Influence of internal structure and medium length on transport and deposition of suspended particles: a laboratory study. Transp. Porous Media 76, 289–307 (2009)

    Article  Google Scholar 

  • Barnichon, J.: Contribution of the bounding surface plasticity to the simulation of gallery excavation in plastic clays. Eng. Geol. 64, 217–231 (2002)

    Article  Google Scholar 

  • Benamar, A., Ahfir, N., Wang, H., Alem, A.: Particle transport in a saturated porous medium: pore structure effects. C. R. Geosci. 339(10), 674–681 (2007)

    Article  Google Scholar 

  • Benamar, A.: Effect of hydraulic load and water chemistry on soil suffusion. In: Proceedings on International Conference on Scour and Erosion ICSE 7, Perth (Australia), Ed., pp. 197–202. CRC Press (2014)

  • Berg, C.F.: Permeability description by characteristic length, tortuosity, constriction and porosity. Transp. Porous Media 103(3), 381–400 (2014)

    Article  Google Scholar 

  • Blume, T., Weisbrod, N., Selker, J.S.: On the critical salt concentrations for particle detachment in homogeneous sand and heterogeneous Hanford sediments. Geoderma 124, 121–132 (2005)

    Article  Google Scholar 

  • Bonelli, S., Marot, D.: Micromechanical modeling of internal erosion. Eur. J. Environ. Civ. Eng. 15(8), 1207–1224 (2011)

    Article  Google Scholar 

  • Carman, P.: Fluid flow through granular beds. Trans. Inst. Chem. Eng. 15, 150–166 (1937)

    Google Scholar 

  • Chapuis, R.P., Aubertin, M.: On the use of the Kozeny–Carman equation to predict the hydraulic conductivity of soils. Can. Geotech. J. 40(3), 616–628 (2003)

    Article  Google Scholar 

  • Civan, F.: Modified formulations of particle deposition and removal kinetics in saturated porous media. Transp. Porous Media 111, 381–410 (2016)

    Article  Google Scholar 

  • Einstein, A.: Eine neue Bestimmung der Moleküldimensionen. Ann. Phys. 19, 289–306 (1906)

    Article  Google Scholar 

  • Govindaraju, R.S., Reddi, L.N., Kasavaraju, S.K.: A physically based model for mobilization of kaolinite particles under hydraulic gradients. J. Hydrol. 172, 331–350 (1995)

    Article  Google Scholar 

  • Gravelle, A., Peysson, Y., Tabary, R., Egermann, P.: Experimental investigation and modelling of colloidal release in porous media. Transp. Porous Media 88, 441–459 (2011)

    Article  Google Scholar 

  • Grolimund, D., Elimelich, M., Borcovec, M., Barmettler, K., Kretzschmar, R., Sticher, H.: Transport of in situ mobilized colloidal particles in packed soil columns. Environ. Sci. Technol. 32, 3562–3569 (1998)

    Article  Google Scholar 

  • Khilar, K.C., Fogler, H.S.: The existence of a critical salt concentration for particle release. J. Colloid Interface Sci. 101, 214–224 (1984)

    Article  Google Scholar 

  • Koponen, A., Kataja, M., Timonen, J.: Permeability and effective porosity of porous media. Phys. Rev. E 56(3), 3319–3325 (1997)

    Article  Google Scholar 

  • Kretzschmar, R., Barmettler, K., Grolimund, D., Yan, Y.D., Borkovec, M., Sticher, H.: Experimental determination of colloid deposition rates and collision efficiencies in natural porous media. Water Resour. Res. 33, 1129–1137 (1997)

    Article  Google Scholar 

  • Massei, N., Lacroix, M., Wang, H.Q., Dupont, J.P.: Transport of particulate material and dissolved tracer in a highly permeable porous medium: comparison of the transfer parameters. J. Contam. Hydrol. 57, 21–39 (2002)

    Article  Google Scholar 

  • Mesticou, Z., Kacem, M., Dubujet, P.: Influence of ionic strength and flow rate on silt particle deposition and release in saturated porous medium: experiment and modeling. Transp. Porous Media 103, 1–24 (2014)

    Article  Google Scholar 

  • Mesticou, Z., Kacem, M., Dubujet, P.: Coupling effects of flow velocity and ionic strength on the clogging of a saturated porous medium. Transp. Porous Media 112, 265–282 (2016)

    Article  Google Scholar 

  • Nocito-Gobel, J., Tobiason, J.E.: Effects of ionic strength on colloid deposition and release. Colloids Surf. A 107, 223–231 (1996)

    Article  Google Scholar 

  • Papamichos, E., Vardoulakis, I.: Sand erosion with a porosity diffusion law. Comput. Geotech. 32(1), 47–58 (2005)

    Article  Google Scholar 

  • Roy, S.B., Dzombak, D.A.: Colloid release and transport processes in natural and model porous media. Colloids Surf. A 107, 245–262 (1996)

    Article  Google Scholar 

  • Seghir, A., Benamar, A., Huaqing, W.: Effects of fine particles on the suffusion of cohesionless soils. Transp. Porous Media 103(2), 233–247 (2014)

    Article  Google Scholar 

  • Sterpi, D.: Effects of the erosion and transport of fine particles due to seepage flow. Int. J. Geomech. 3(1), 111–122 (2003)

    Article  Google Scholar 

  • Trani, L.D.O., Indraratna, B.: The use of particle size distribution by surface area method in predicting the saturated hydraulic conductivity of graded granular soils. Geotechnique 60(12), 957–962 (2010)

    Article  Google Scholar 

  • Vardoulakis, I., Stavropoulou, M., Papanastasiou, P.: Hydro-mechanical aspects of the sand production problem. Transp. Porous Media 22, 225–244 (1996)

    Article  Google Scholar 

  • Wan, C.F., Fell, R.: Investigation of rate of erosion of soils in embankment dams. J. Geotech. Geoenviron. Eng. 130(4), 373–380 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The research described in this paper was realized in the laboratory Waves and Complex Media Laboratory, FRE 3102 CNRS, University of Le Havre—France

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Chetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chetti, A., Benamar, A. & Hazzab, A. Modeling of Particle Migration in Porous Media: Application to Soil Suffusion. Transp Porous Med 113, 591–606 (2016). https://doi.org/10.1007/s11242-016-0714-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0714-y

Keywords

Navigation