Skip to main content
Log in

Colloid Transport in Porous Media: A Review of Classical Mechanisms and Emerging Topics

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

To celebrate the tenth anniversary of InterPore, we present an interdisciplinary review of colloid transport through porous media. This review aims to explore both classical colloid transport and topics that fall outside that purview and thus offer transformative insights into the physics governing transport behavior. First, we discuss the unique colloid characteristics relative to molecules and larger particles. Then, the classical advection–dispersion–filtration models (both conceptual and mathematical) of colloid transport are introduced as well as anomalous transport behaviors. Next, the forces of interaction between colloids and porous media surfaces are discussed. Fourth, applications that are interested in maximizing the transport of colloids through porous media are considered. Then the concept of motile, active biocolloids is introduced, and finally, colloid swarming as a newly recognized mode of transport is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adachi, Y.: Dynamic aspects of coagulation and flocculation. Adv. Coll. Interface. Sci. 56, 1–31 (1995)

    Google Scholar 

  • Adachi, K., Kiriyama, S., Koshioka, N.: The behaviour of a swarm of particles moving in a viscous fluid. Chem. Eng. Sci. 33, 115–121 (1978)

    Google Scholar 

  • Aderibigbe, A., Cheng, K., Heidari, Z., Killough, J., Fuss, T., Stephens, T.: Detection of propping agents in fractures using magnetic susceptibility measurement enhanced by magnetic nano-particles. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2014)

  • Agranovski, I.E., Braddock, R.D.: Filtration of liquid aerosols on nonwettable fibrous filters. AIChE J. 44(12), 2784–2790 (1998)

    Google Scholar 

  • Alazraki, N.P., Eshima, D., Eshima, L.A., Herda, S.C., Murray, D.R., Vansant, J.P., Taylor, A.T.: Lymphoscintigraphy, the sentinel node concept, and the intraoperative gamma probe in melanoma, breast cancer, and other potential cancers. Semin. Nucl. Med. 27(1), 55–67 (1997)

    Google Scholar 

  • Albanese, A., Chan, W.C.W.: Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 5(7), 5478–5489 (2011)

    Google Scholar 

  • Alili, L., Sack, M., Karakoti, A.S., Teuber, S., Puschmann, K., Hirst, S.M., Reilly, C.M., Zanger, K., Stahl, W., Das, S., Seal, S., Brenneisen, P.: Combined cytotoxic and anti-invasive properties of redox-active nanoparticles in tumor–stroma interactions. Biomaterials 32(11), 2918–2929 (2011)

    Google Scholar 

  • Anderson, J.L.: Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21(1), 61–99 (1989)

    Google Scholar 

  • Aranson, I.S.: Active colloids. Phys. Usp. 56(1), 79–92 (2013)

    Google Scholar 

  • Arecchi, F.T., Buah-Bassuah, P.K., Francini, F., Pérez-Garcia, C., Quercioli, F.: An experimental investigation of the break-up of a liquid drop falling in a miscible fluid. Europhys. Lett. 9, 333–338 (1989)

    Google Scholar 

  • Assemi, S., Nalaskowski, J., Johnson, P.W.: Direct force measurements between carboxylate-modified latex microspheres and glass using atomic force microscopy. Colloids Surfaces A: Physicochem. Eng. Aspects 286, 70–77 (2006)

    Google Scholar 

  • Bai, R., Tien, C.: A new correlation for the initial filter coefficient under unfavorable surface interactions. J. Colloid Interface Sci. 179(2), 631–634 (1996)

    Google Scholar 

  • Bai, R., Tien, C.: Particle deposition under unfavorable surface interactions. J. Colloid Interface Sci. 218(2), 488–499 (1999)

    Google Scholar 

  • Bakanov, S.P.: Thermophoresis of aerosols: a review. J. Aerosol Sci. 22, S215–S218 (1991)

    Google Scholar 

  • Barthès-Biesel, D.: Computer Simulation Using Particles. CRC Press, New York (2012)

    Google Scholar 

  • Baskaran, A., Marchetti, M.C.: Statistical mechanics and hydrodynamics of bacterial suspensions. Proc. Natl. Acad. Sci. 106, 15567–15572 (2009)

    Google Scholar 

  • Bento, F.M., Camargo, F.A.O., Okeke, B.C., Frankenberger, W.T.: Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Biores. Technol. 96(9), 1049–1055 (2005)

    Google Scholar 

  • Berg, H.C.E.: E. coli in motion. Springer, New York (2004)

    Google Scholar 

  • Bergendahl, J., Grasso, D.: Prediction of colloid detachment in a model porous media: hydrodynamics. Chem. Eng. Sci. 55(9), 1523–1532 (2000)

    Google Scholar 

  • Berke, A.P., Turner, L., Berg, H.C., Lauga, E.: Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101, 038102 (2008)

    Google Scholar 

  • Berkowitz, B., Cortis, A., Dentz, M., Scher, H.: Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44(2), 49 (2006)

    Google Scholar 

  • Bhutra, S., Payatakes, A.C.: Experimental investigation of dendritic deposition of aerosol particles. J. Aerosol Sci. 10(5), 445–464 (1979)

    Google Scholar 

  • Bibette, J., Calderon, F.L., Poulin, P.: Emulsions: basic principles. Rep. Prog. Phys. 62(6), 969 (1999)

    Google Scholar 

  • Biswas, P., Wu, C.-Y.: Nanoparticles and the Environment. J. Air Waste Manag. Assoc. 55(6), 708–746 (2005)

    Google Scholar 

  • Bitton, G., Harvey, R.W.: Transport of pathogens through soil. In: Mitchell, R. (ed.) Environmental Microbiology, pp. 103–124. Wiley, New York (1992)

    Google Scholar 

  • Boccardo, G., Crevacore, E., Sethi, R., Icardi, M.: A robust upscaling of the effective particle deposition rate in porous media. J. Contam. Hydrol. 212, 3–13 (2018)

    Google Scholar 

  • Boomsma, E.R.: Particle Swarms in Confining Geometries, p. 104. Purdue University, West Lafayette (2014)

    Google Scholar 

  • Boomsma, E.R., Pyrak-Nolte, L.J.: Particle Swarms in Fractures, pp. 63–84. American Geophysical Union, Washington (2015)

    Google Scholar 

  • Boparai, H.K., Joseph, M., O’Carroll, D.M.: Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater. 186(1), 458–465 (2011)

    Google Scholar 

  • Bosse, T., Kleiser, L., Favre, J., Meiburg, E.: Settling and breakup of suspension drops. Phys. Fluids 17(9), 091107 (2005)

    Google Scholar 

  • Bradford, S.A., Harvey, R.W.: Future research needs involving pathogens in groundwater. Hydrogeol. J. 25(4), 931–938 (2017)

    Google Scholar 

  • Bradford, S.A., Torkzaban, S.: Colloid transport and retention in unsaturated porous media: a review of interface-, collector-, and pore-scale processes and models all rights reserved. Vadose Zone J. 7(2), 667–681 (2008)

    Google Scholar 

  • Bradford, S.A., Simunek, J., Bettahar, M., van Genuchten, M.T., Yates, S.R.: Modeling colloid attachment, straining, and exclusion in saturated porous media. Environ. Sci. Technol. 37(10), 2242–2250 (2003)

    Google Scholar 

  • Bradford, S.A., Torkzaban, S., Simunek, J.: Modeling colloid transport and retention in saturated porous media under unfavorable attachment conditions. Water Resour. Res. 47, W10503 (2011)

    Google Scholar 

  • Bradford, S.A., Morales, V.L., Zhang, W., Harvey, R.W., Packman, A.I., Mohanram, A., Welty, C.: Transport and fate of microbial pathogens in agricultural settings. Crit. Rev. Environ. Sci. Technol. 43(8), 775–893 (2012)

    Google Scholar 

  • Brigger, I., Dubernet, C., Couvreur, P.: Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 64, 24–36 (2012)

    Google Scholar 

  • Burganos, V.N., Paraskeva, C.A., Payatakes, A.C.: Three-dimensional trajectory analysis and network simulation of deep bed filtration. J. Colloid Interface Sci. 148(1), 167–181 (1992)

    Google Scholar 

  • Buttinoni, I., Bialké, J., Kümmel, F., Löwen, H., Bechinger, C., Speck, T.: Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Phys. Rev. Lett. 110(23), 238301 (2013)

    Google Scholar 

  • Camesano, T.A., Logan, B.E.: Influence of fluid velocity and cell concentration on the transport of motile and nonmotile bacteria in porous media. Environ. Sci. Technol. 32(11), 1699–1708 (1998)

    Google Scholar 

  • Camesano, T.A., Unice, K.M., Logan, B.E.: Blocking and ripening of colloids in porous media and their implications for bacterial transport. Colloids Surf. A 160(3), 291–307 (1999)

    Google Scholar 

  • Carraway, E.R., Hoffman, A.J., Hoffmann, M.R.: Photocatalytic oxidation of organic acids on quantum-sized semiconductor colloids. Environ. Sci. Technol. 28(5), 786–793 (1994)

    Google Scholar 

  • Chandler, D.: Interfaces and the driving force of hydrophilic assembly. Nature 437, 640–647 (2005)

    Google Scholar 

  • Chang, Y.-I.M., Whang, J.-J.: Deposition of Brownian particles in the presence of energy barriers of DLVO theory: effect of the dimensionless groups. Chem. Eng. Sci. 53(23), 3923–3939 (1998)

    Google Scholar 

  • Chapman, D.S., Critchlow, P.R.: Formation of vortex rings from falling drops. J. Fluid Mech. 29(1), 177–185 (1967)

    Google Scholar 

  • Cho, K., Wang, X., Nie, S., Chen, Z., Shin, D.M.: Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 14(5), 1310–1316 (2008)

    Google Scholar 

  • Chowdhury, A.I.A., Krol, M.M., Kocur, C.M., Boparai, H.K., Weber, K.P., Sleep, B.E., O’Carroll, D.M.: nZVI injection into variably saturated soils: field and modeling study. J. Contam. Hydrol. 183, 16–28 (2015)

    Google Scholar 

  • Clément, E., Lindner, A., Douarche, C., Auradou, H.: Bacterial suspensions under flow. Eur. Phys. J. Special Top. 225, 2389–2406 (2016)

    Google Scholar 

  • Cocuzza, M., Opirri, C., Rocca, V., Verga, F.: Current and future nanotech applications in the oil industry. American Journal of Applied Sciences 9(6), 784–793 (2012)

    Google Scholar 

  • Coffey, W.T., Kalmykov, Y.P.: The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering. World Scientific, Singapore (2004)

    Google Scholar 

  • Contal, P., Simao, J., Thomas, D., Frising, T., Callé, S., Appert-Collin, J.C., Bémer, D.: Clogging of fibre filters by submicron droplets. Phenomena and influence of operating conditions. J. Aerosol Sci. 35(2), 263–278 (2004)

    Google Scholar 

  • Contino, M., Lushi, E., Tuval, I., Kantsler, V., Polin, M.: Microalgae scatter off solid surfaces by hydrodynamic and contact forces. Phys. Rev. Lett. 115, 258102 (2015)

    Google Scholar 

  • Cortis, A., Harter, T., Hou, L., Atwill, E.R., Packman, A.I., Green, P.G.: Transport of Cryptosporidium parvum in porous media: long-term elution experiments and continuous time random walk filtration modeling. Water Resour. Res. 42(12), 1–12 (2006)

    Google Scholar 

  • Cowell, C., Li-In-On, R., Vincent, B.: Reversible flocculation of sterically-stabilised dispersions. J. Chem. Soc. Faraday Trans. 1: Phys. Chem. Condens. Phases 74, 337–347 (1978)

    Google Scholar 

  • de Jonge, H., Jacobsen, O.H., de Jonge, L.W., Moldrup, P.: Particle-facilitated transport of prochloraz in undisturbed sandy loam soil columns. J. Environ. Qual. 27(6), 1495–1503 (1998)

    Google Scholar 

  • de Jonge, L.W., Kjaergaard, C., Moldrup, P.: Colloids and colloid-facilitated transport of contaminants in soils. Vadose Zone J. 3(2), 321–325 (2004)

    Google Scholar 

  • DeFlaun, M.F., Tanzer, A.S., McAteer, A.L., Marshall, B., Levy, S.B.: Development of an adhesion assay and characterization of an adhesion-deficient mutant of pseudomonas fluorescens. Appl. Environ. Microbiol. 56(1), 112–119 (1990)

    Google Scholar 

  • DeFlaun, M.F., Oppenheimer, S.R., Streger, S., Condee, C.W., Fletcher, M.: Alterations in adhesion, transport, and membrane characteristics in an adhesion-deficient pseudomonad. Appl. Environ. Microbiol. 65(2), 759–765 (1999)

    Google Scholar 

  • Deichmann, U.: “Molecular” versus “colloidal”: Controversies in biology and biochemistry, 1900–1940 (2007)

  • Di Leonardo, R.: Controlled collective motions. Nat. Mater. 15, 1057–1058 (2016)

    Google Scholar 

  • Dreyfus, R., Baudry, J., Roper, M.L., Fermigier, M., Stone, H.A., Bibette, J.: Microscopic artificial swimmers. Nature 437, 862 (2005)

    Google Scholar 

  • Dunphy Guzman, K.A., Finnegan, M.P., Banfield, J.F.: Influence of surface potential on aggregation and transport of titania nanoparticles. Environ. Sci. Technol. 40(24), 7688–7693 (2006)

    Google Scholar 

  • Ebbens, S.J.: Active colloids: progress and challenges towards realising autonomous applications. Curr. Opin. Colloid Interface Sci. 21, 14–23 (2016)

    Google Scholar 

  • Ebel, J.P., Anderson, J.L., Prieve, D.C.: Diffusiophoresis of latex particles in electrolyte gradients. Langmuir 4(2), 396–406 (1988)

    Google Scholar 

  • Elimelech, M.: Predicting collision efficiencies of colloidal particles in porous media. Water Res. 26(1), 1–8 (1992)

    Google Scholar 

  • Elimelech, M., Omelia, C.R.: Kinetics of deposition of colloidal particles in porous-media. Environ. Sci. Technol. 24(10), 1528–1536 (1990a)

    Google Scholar 

  • Elimelech, M., Omelia, C.R.: Effect of particle-size on collision efficiency in the deposition of brownian particles with electrostatic energy barriers. Langmuir 6(6), 1153–1163 (1990b)

    Google Scholar 

  • Elimelech, M., John, G., Xiadong, J.: Particle Deposition and Aggregation: Measurement, Modelling and Simulation. Butterworth-Heinemann, Oxford (2013)

    Google Scholar 

  • Ezhilan, B., Saintillan, D.: Transport of a dilute active suspension in pressure-driven channel flow. J. Fluid Mech. 777, 482–522 (2015)

    Google Scholar 

  • Feke, D.L., Prabhu, N.D., Mann, J.A.: Formulation of the short-range repulsion between spherical colloidal particle. J. Phys. Chem. B 88(23), 5735–5739 (1984)

    Google Scholar 

  • Figueroa-Morales, N., Miño, G.L., Rivera, A., Caballero, R., Clément, E., Altshuler, E., Lindner, A.: Living on the edge: transfer and traffic of E. coli in a confined flow. Soft Matter 11, 6284–6293 (2015)

    Google Scholar 

  • Fisk, W.J., Faulkner, D., Palonen, J., Seppanen, O.: Performance and costs of particle air filtration technologies. Indoor Air 12(4), 223–234 (2002)

    Google Scholar 

  • Flessner, M.F., Choi, J., Credit, K., Deverkadra, R., Henderson, K.: Resistance of tumor interstitial pressure to the penetration of intraperitoneally delivered antibodies into metastatic ovarian tumors. Clin. Cancer Res. 11(8), 3117 (2005)

    Google Scholar 

  • Florea, D., Musa, S., Huyghe, J.M.R., Wyss, H.M.: Long-range repulsion of colloids driven by ion exchange and diffusiophoresis. Proc. Natl. Acad. Sci. U.S.A. 111(18), 6554–6559 (2014)

    Google Scholar 

  • Fong, T.-T., Mansfield, L.S., Wilson, D.L., Schwab, D.J., Molloy, S.L., Rose, J.B.: Massive microbiological groundwater contamination associated with a waterborne outbreak in Lake Erie, South Bass Island, Ohio. Environ. Health Perspect. 115(6), 856–864 (2007)

    Google Scholar 

  • Fontes, D.E., Mills, A.L., Hornberger, G.M., Herman, J.S.: Physical and chemical factors influencing transport of microorganisms through porous media. Appl. Environ. Microbiol. 57(9), 2473–2481 (1991)

    Google Scholar 

  • Frising, T., Thomas, D., Bémer, D., Contal, P.: Clogging of fibrous filters by liquid aerosol particles: experimental and phenomenological modelling study. Chem. Eng. Sci. 60(10), 2751–2762 (2005)

    Google Scholar 

  • Frymier, P.D., Ford, R.M., Berg, H.C., Cummings, P.T.: Three-dimensional tracking of motile bacteria near a solid planar surface. Proc. Natl. Acad. Sci. U.S.A. 92(13), 6195–6199 (1995)

    Google Scholar 

  • Fujimori, K., Covell, D.G., Fletcher, J.E., Weinstein, J.N.: A modeling analysis of monoclonal antibody percolation through tumors: a binding-site barrier. J. Nucl. Med.: Off. Publ. Soc. Nucl. Med. 31(7), 1191–1198 (1990)

    Google Scholar 

  • Gallay, A., De Valk, H., Cournot, M., Ladeuil, B., Hemery, C., Castor, C., Bon, F., Mégraud, F., Le Cann, P., Desenclos, J.C.: A large multi-pathogen waterborne community outbreak linked to faecal contamination of a groundwater system, France, 2000. Clin. Microbiol. Infect. 12(6), 561–570 (2006)

    Google Scholar 

  • Gaveau, A., Coetsier, C., Roques, C., Bacchin, P., Dague, E.: Bacteria transfer by deformation through microfiltration membrane. J. Membr. Sci. 523, 446–455 (2017)

    Google Scholar 

  • Gentry, T., Rensing, C., Pepper, I.A.N.: New approaches for bioaugmentation as a remediation technology. Crit. Rev. Environ. Sci. Technol. 34(5), 447–494 (2004)

    Google Scholar 

  • Ginn, T.R.: On the distribution of multicomponent mixtures over generalized exposure time in subsurface flow and reactive transport: theory and formulations for residence-time-dependent sorption/desorption with memory. Water Resour. Res. 36(10), 2885–2893 (2000)

    Google Scholar 

  • Ginn, T.R., Wood, B.D., Nelson, K.E., Scheibe, T.D., Murphy, E.M., Clement, T.P.: Processes in microbial transport in the natural subsurface. Adv. Water Resour. 25(8–12), 1017–1042 (2002)

    Google Scholar 

  • Goldberg, E., Scheringer, M., Bucheli, T.D., Hungerbühler, K.: Critical assessment of models for transport of engineered nanoparticles in saturated porous media. Environ. Sci. Technol. 48(21), 12732–12741 (2014)

    Google Scholar 

  • Goodman, T.T., Chen, J., Matveev, K., Pun, S.H.: Spatio-temporal modeling of nanoparticle delivery to multicellular tumor spheroids. Biotechnol. Bioeng. 101(2), 388–399 (2008)

    Google Scholar 

  • Grasso, D., Subramaniam, K., Butkus, M., Strevett, K., Bergendahl, J.: A review of non-DLVO interactions in environmental colloidal systems. Rev. Environ. Sci. Biotechnol. 1(1), 17–38 (2002)

    Google Scholar 

  • Hagens, W.I., Oomen, A.G., de Jong, W.H., Cassee, F.R., Sips, A.: What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul. Toxicol. Pharmacol. 49(3), 217–229 (2007)

    Google Scholar 

  • Hahn, M.W., O’Melia, C.R.: Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: some concepts and applications. Environ. Sci. Technol. 38(1), 210–220 (2004)

    Google Scholar 

  • Haig, S.J., Collins, G., Davies, R.L., Dorea, C.C., Quince, C.: Biological aspects of slow sand filtration: past, present and future. Water Sci. Tech. Water Supply 11(4), 468–472 (2011)

    Google Scholar 

  • Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media. Kluwer, Alphen aan den Rijn (1983)

    Google Scholar 

  • Harvey, R.W.: Microorganisms as tracers in groundwater injection and recovery experiments: a review. FEMS Microbiol. Rev. 20, 461–472 (1997)

    Google Scholar 

  • Harvey, R.W., George, L.H., Smith, R.L., LeBlanc, D.R.: Transport of microspheres and indigenous bacteria through a sandy aquifer: results of natural-and forced-gradient tracer experiments. Environ. Sci. Technol. 23(1), 51–56 (1989)

    Google Scholar 

  • He, F., Zhang, M., Qian, T., Zhao, D.: Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: column experiments and modeling. J. Colloid Interface Sci. 334(1), 96–102 (2009)

    Google Scholar 

  • Henn, K.W., Waddill, D.W.: Utilization of nanoscale zero-valent iron for source remediation—A case study. Remediation Journal 16(2), 57–77 (2006)

    Google Scholar 

  • Hermansson, M.: The DLVO theory in microbial adhesion. Colloids Surf. B 14(1), 105–119 (1999)

    Google Scholar 

  • Hernandez-Ortiz, J.P., Stoltz, C.G., Graham, M.D.: Transport and collective dynamics in suspensions of confined swimming particles. Phys. Rev. Lett. 95, 204501 (2005)

    Google Scholar 

  • Hill, J., Kalkanci, O., McMurry, J.L., Koser, H.: Hydrodynamic surface interactions enable Escherichia coli to seek efficient routes to swim upstream. Phys. Rev. Lett. 98, 068101 (2007)

    Google Scholar 

  • Hoffmann, J.E.: Recovery of platinum-group metals from gabbroic rocks metals from auto catalysts. JOM 40(6), 40–44 (1988)

    Google Scholar 

  • Hori, K., Matsumoto, S.: Bacterial adhesion: from mechanism to control. Biochem. Eng. J. 48(3), 424–434 (2010)

    Google Scholar 

  • Hornberger, G.M., Mills, A.L., Herman, J.S.: Bacterial transport in porous media: evaluation of a model using laboratory observations. Water Resour. Res. 28(3), 915–923 (1992)

    Google Scholar 

  • Hotze, E.M., Phenrat, T., Lowry, G.V.: Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J. Environ. Qual. 39(6), 1909–1924 (2010)

    Google Scholar 

  • Hughes, D.: Transvascular fluid dynamics. Vet. Anaesth. Analg. 27(1), 63–69 (2000)

    Google Scholar 

  • Hwang, C.C., Wang, L., Lu, W., Ruan, G., Kini, G.C., Xiang, C., Samuel, E.L.G., Shi, W., Kan, A., Wong, M., Tomson, M.B., Tour, J.: HIghly stable carbon nanoparticles designed for downhole hydrocarbon detection. Energy Environ. Sci. 5, 8304 (2012)

    Google Scholar 

  • Iliev, O., Kirsch, R., Lakdawala, Z., Rief, S., Steiner, K.: Modeling and simulation of filtration processes. In: Neunzert, H., Prätzel-Wolters, D. (eds.) Currents in Industrial Mathematics: From Concepts to Research to Education, pp. 163–228. Springer, Berlin (2015)

    Google Scholar 

  • Israelachvili, J.: Intermolecular and Surface Forces. Academic Press, San Diego (1992)

    Google Scholar 

  • Israelachvili, J.N.: 11—contrasts between intermolecular, interparticle, and intersurface forces. In: Israelachvili, J.N. (ed.) Intermolecular and Surface Forces, pp. 205–222. Academic Press, San Diego (2011)

    Google Scholar 

  • Israelachvili, J., Wennerström, H.: Role of hydration and water structure in biological and colloidal interactions. Nature 379(6562), 219 (1996)

    Google Scholar 

  • Jain, R.K.: Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. JNCI: J. Natl. Cancer Inst. 81(8), 570–576 (1989)

    Google Scholar 

  • Jana, S., Eddins, A., Spoon, C., Jung, S.: Somersault of Paramecium in extremely confined environments. Sci. Rep. 5, 13148 (2015)

    Google Scholar 

  • Jiang, X., Tong, M., Lu, R., Kim, H.: Transport and deposition of ZnO nanoparticles in saturated porous media. Colloids Surf. A 401, 29–37 (2012)

    Google Scholar 

  • Johnson, P.R., Elimelech, M.: Dynamics of colloid deposition in porous-media—blocking based on random sequential adsorption. Langmuir 11(3), 801–812 (1995)

    Google Scholar 

  • Johnson, W.P., Hilpert, M.: Upscaling colloid transport and retention under unfavorable conditions: linking mass transfer to pore and grain topology. Water Resour. Res. 49(9), 5328–5341 (2013)

    Google Scholar 

  • Kamai, T., Nassar, M.K., Nelson, K.E., Ginn, T.R.: Colloid filtration prediction by mapping the correlation-equation parameters from transport experiments in porous media. Water Resour. Res. 51(11), 8995–9012 (2015)

    Google Scholar 

  • Kantsler, V., Dunkel, J., Polin, M., Goldstein, R.E.: Ciliary contact interactions dominate surface scattering of swimming eukaryotes. Proc. Natl. Acad. Sci. USA 110(4), 1187–1192 (2013)

    Google Scholar 

  • Kasel, D., Bradford, S.A., Šimůnek, J., Heggen, M., Vereecken, H., Klumpp, E.: Transport and retention of multi-walled carbon nanotubes in saturated porous media: effects of input concentration and grain size. Water Res. 47(2), 933–944 (2013)

    Google Scholar 

  • Keh, H.J., Anderson, J.L.: Boundary effects on electrophoretic motion of colloidal spheres. J. Fluid Mech. 153, 417–439 (2006)

    Google Scholar 

  • Kim, S., Karrila, S.J.: Microhydrodynamics: Principles and Selected Applications. Dover, Mineola (2005)

    Google Scholar 

  • Kim, C., Lee, S.: Effect of seepage velocity on the attachment efficiency of TiO2 nanoparticles in porous media. J. Hazard. Mater. 279, 163–168 (2014)

    Google Scholar 

  • Kim, I.G., Hwang, M.P., Du, P., Ko, J., Ha, C.-W., Do, S.H., Park, K.: Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing. Biomaterials 50, 75–86 (2015)

    Google Scholar 

  • Kim, M.K., Ingremeau, F., Zhao, A., Bassler, B.L., Stone, H.A.: Local and global consequences of flow on bacterial quorum sensing. Nat. Microbiol. 1, 15005 (2018)

    Google Scholar 

  • Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J., Lead, J.R.: Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 27(9), 1825–1851 (2008)

    Google Scholar 

  • Kobayashi, M., Nanaumi, H., Muto, Y.: Initial deposition rate of latex particles in the packed bed of zirconia beads. Colloids Surfaces A: Physicochem. Eng. Aspects 347, 2–7 (2009)

    Google Scholar 

  • Kocur, C.M., Chowdhury, A.I., Sakulchaicharoen, N., Boparai, H.K., Weber, K.P., Sharma, P., Krol, M.M., Austrins, L., Peace, C., Sleep, B.E., O’Carroll, D.M.: Characterization of nZVI mobility in a field scale test. Environ. Sci. Technol. 48(5), 2862–2869 (2014)

    Google Scholar 

  • Kojima, M., Hinch, E.J., Acrivos, A.: The formation and expansion of a toroidal drop moving in a viscous fluid. Phys. Fluids 27, 19–32 (1984)

    Google Scholar 

  • Korber, D.R., Lawrence, J.R., Sutton, B., Caldwell, D.E.: Effect of laminar flow velocity on the kinetics of surface recolonization by Mot + and Mot − Pseudomonas fluorescens. Microb. Ecol. 18(1), 1–19 (1989)

    Google Scholar 

  • Korber, D.R., Lawrence, J.R., Caldwell, D.E.: Effect of motility on surface colonization and reproductive success of Pseudomonas fluorescens in dual-dilution continuous culture and batch culture systems. Appl. Environ. Microbiol. 60(5), 1421 (1994)

    Google Scholar 

  • Krol, M.M., Oleniuk, A.J., Kocur, C.M., Sleep, B.E., Bennett, P., Xiong, Z., O’Carroll, D.M.: A field-validated model for in situ transport of polymer-stabilized nZVI and implications for subsurface injection. Environ. Sci. Technol. 47(13), 7332–7340 (2013)

    Google Scholar 

  • Landkamer, L.L., Harvey, R.W., Scheibe, T.D., Ryan, J.N.: Colloid transport in saturated porous media: elimination of attachment efficiency in a new colloid transport model. Water Resour. Res. 49(5), 2952–2965 (2013)

    Google Scholar 

  • Lanphere, J.D., Luth, C.J., Walker, S.L.: Effects of solution chemistry on the transport of graphene oxide in saturated porous media. Environ. Sci. Technol. 47(9), 4255–4261 (2013)

    Google Scholar 

  • Lauga, E., DiLuzio, W.R., Whitesides, G.M., Stone, H.A.: Swimming in circles: motion of bacteria near solid boundaries. Biophys. J. 90, 400–412 (2006)

    Google Scholar 

  • Lee, K.W., Liu, B.Y.H.: Theoretical study of aerosol filtration by fibrous filters. Aerosol Sci. Technol. 1(2), 147–161 (1982)

    Google Scholar 

  • Lee, D.J., Wang, C.H.: Theories of cake filtration and consolidation and implications to sludge dewatering. Water Res. 34(1), 1–20 (2000)

    Google Scholar 

  • Li, X.Q., Johnson, W.P.: Nonmonotonic variations in deposition rate coefficients of microspheres in porous media under unfavorable deposition conditions. Environ. Sci. Technol. 39(6), 1658–1665 (2005)

    Google Scholar 

  • Li, Q., Logan, B.E.: Enhancing bacterial transport for bioaugmentation of aquifers using low ionic strength solutions and surfactants. Water Res. 33(4), 1090–1100 (1999)

    Google Scholar 

  • Li, X.Q., Zhang, P.F., Lin, C.L., Johnson, W.P.: Role of hydrodynamic drag on microsphere deposition and re-entrainment in porous media under unfavorable conditions. Environ. Sci. Technol. 39(11), 4012–4020 (2005)

    Google Scholar 

  • Li, X.-Q., Elliott, D.W., Zhang, W.-X.: Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit. Rev. Solid State Mater. Sci. 31(4), 111–122 (2006)

    Google Scholar 

  • Li, Y., Wang, Y., Pennell, K.D., Abriola, L.M.: Investigation of the transport and deposition of fullerene (C60) nanoparticles in quartz sands under varying flow conditions. Environ. Sci. Technol. 42(19), 7174–7180 (2008)

    Google Scholar 

  • Li, G., Bensson, J., Nisimova, L., Munger, D., Mahautmr, P., Tang, J.X., Maxey, M.R., Brun, Y.V.: Accumulation of swimming bacteria near a solid surface. Phys. Rev. E 84, 041932 (2011)

    Google Scholar 

  • Lin, D., Tian, X., Wu, F., Xing, B.: Fate and transport of engineered nanomaterials in the environment. J. Environ. Qual. 39(6), 1896–1908 (2010)

    Google Scholar 

  • Lin, Y., Tan, J.H., Phan-Thien, N., Khoo, B.C.: Settling of particle-suspension drops at low to moderate Reynolds numbers. Eur. J. Mech. B-Fluids 61(1), 72–76 (2017)

    Google Scholar 

  • Lindqvist, R., Cho, J.S., Enfield, C.G.: A kinetic model for cell density dependent bacterial transport in porous media. Water Resour. Res. 30(12), 3291–3299 (1994)

    Google Scholar 

  • Liu, Q., Dong, M., Ma, S., Tu, Y.: Surfactant enhanced alkaline flooding for Western Canadian heavy oil recovery. Colloids Surf. A 293(1), 63–71 (2007)

    Google Scholar 

  • Liu, X.Y., O’Carroll, D.M., Petersen, E.J., Huang, Q.G., Anderson, C.L.: Mobility of multiwalled carbon nanotubes in porous media. Environ. Sci. Technol. 43(21), 8153–8158 (2009)

    Google Scholar 

  • Logan, B., Jewett, D., Arnold, R., Bouwer, E., O’Melia, C.: Clarification of clean-bed filtration models. J. Environ. Eng. 121(12), 869–873 (1995)

    Google Scholar 

  • Long, W., Hilpert, M.: A correlation for the collector efficiency of Brownian particles in clean-bed filtration in sphere packings by a lattice-boltzmann method. Environ. Sci. Technol. 43(12), 4419–4424 (2009)

    Google Scholar 

  • Long, W., Huang, H., Serlemitsos, J., Liu, E., Reed, A.H., Hilpert, M.: Pore-scale study of the collector efficiency of nanoparticles in packings of nonspherical collectors. Colloids Surf. A 358(1–3), 163–171 (2010)

    Google Scholar 

  • López, H.M., Gachelin, J., Douarche, C., Auradou, H., Clément, E.: Turning bacteria suspensions into superfluids. Phys. Rev. Lett. 115, 028301 (2015)

    Google Scholar 

  • Ma, H., Johnson, W.P.: Colloid retention in porous media of various porosities: predictions by the hemispheres-in-cell model. Langmuir 26(3), 1680–1687 (2010)

    Google Scholar 

  • Ma, H., Pedel, J., Fife, P., Johnson, W.P.: Hemispheres-in-cell geometry to predict colloid deposition in porous media. Environ. Sci. Technol. 43(22), 8573–8579 (2009)

    Google Scholar 

  • Ma, H., Pazmino, E., Johnson, W.P.: Surface heterogeneity on hemispheres-in-cell model yields all experimentally-observed non-straining colloid retention mechanisms in porous media in the presence of energy barriers. Langmuir 27(24), 14982–14994 (2011)

    Google Scholar 

  • Mac Kenzie, W.R., Hoxie, N.J., Proctor, M.E., Gradus, M.S., Blair, K.A., Peterson, D.E., Kazmierczak, J.J., Addiss, D.G., Fox, K.R., Rose, J.B., Davis, J.P.: A massive outbreak in Milwaukee of Cryptosporidium infection transmitted through the public water supply. New Engl J Med 331(3), 161–167 (1994)

    Google Scholar 

  • Machu, G., Meile, W., Nitsche, L.C., Schaflinger, U.: Coalescence, torus formation and breakup of sedimenting drops: experiments and computer simulations. J. Fluid Mech. 447, 299–336 (2001a)

    Google Scholar 

  • Machu, G., Meile, L.N.W., Schaflinger, U.: The motion of a swarm of particles traveling through a quiescent viscous fluid. Zeitschrift Fur Angewandte Mathematik Und Mechanik 81, S547–S548 (2001b)

    Google Scholar 

  • Manzoor, A.A., Lindner, L.H., Landon, C.D., Park, J.-Y., Simnick, A.J., Dreher, M.R., Das, S., Hanna, G., Park, W., Chilkoti, A., Koning, G.A., ten Hagen, T.L.M., Needham, D., Dewhirst, M.W.: Overcoming limitations in nanoparticle drug delivery: triggered, intravascular release to improve drug penetration into tumors. Cancer Res. 72, 5566–5575 (2012)

    Google Scholar 

  • Marchiani, S., Tamburrino, L., Muratori, M., Baldi, E.: Epididymal sperm transport and fertilization. In: Simoni, M., Huhtaniemi, I.T. (eds.) Endocrinology of the Testis and Male Reproduction. Springer, Cham (2017)

    Google Scholar 

  • Mattison, N.T., O’Carroll, D.M., Kerry Rowe, R., Petersen, E.J.: Impact of porous media grain size on the transport of multi-walled carbon nanotubes. Environ. Sci. Technol. 45(22), 9765–9775 (2011)

    Google Scholar 

  • McCarthy, J.F., McKay, L.D.: Colloid transport in the subsurface. Vadose Zone J. 3(2), 326–337 (2004)

    Google Scholar 

  • McCarthy, J.F., Zachara, J.M.: Subsurface transport of contaminants. Environ. Sci. Technol. 23(5), 496–502 (1989)

    Google Scholar 

  • Meng, H., Xue, M., Xia, T., Ji, Z., Tarn, D.Y., Zink, J.I., Nel, A.E.: Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano 5(5), 4131–4144 (2011)

    Google Scholar 

  • Messina, F., Marchisio, D.L., Sethi, R.: An extended and total flux normalized correlation equation for predicting single-collector efficiency. J. Colloid Interface Sci. 446, 185–193 (2015)

    Google Scholar 

  • Metzger, B., Nicolas, M., Guazzelli, É.: Falling clouds of particles in viscous fluids. J. Fluid Mech. 580, 283–301 (2007)

    Google Scholar 

  • Miettinen, I.T., Zacheus, O., von Bonsdorff, C.H., Vartiainen, T.: Waterborne epidemics in Finland in 1998–1999. Water Sci. Technol. 43(12), 67 (2001)

    Google Scholar 

  • Miño, G.L., Baabour, M., Chertcoff, R., Gutkind, G., Clément, E., Auradou, H., Ippolito, I.: E. coli accumulation behind an obstacle. Advances in Microbiology 8, 451–464 (2018)

    Google Scholar 

  • Mirzakhanloo, M., Alam, M.-R.: Flow characteristics of Chlamydomonas result in purely hydrodynamic scattering. Phys. Rev. E 98, 012603 (2018)

    Google Scholar 

  • Molnar, I.L., O’Carroll, D.M., Gerhard, J.I.: Impact of surfactant-induced wettability alterations on DNAPL invasion in quartz and iron oxide-coated sand systems. J. Contam. Hydrol. 119(1–4), 1–12 (2011)

    Google Scholar 

  • Molnar, I.L., Johnson, W.P., Gerhard, J.I., Willson, C.S., O’Carroll, D.M.: Predicting colloid transport through saturated porous media: a critical review. Water Resour. Res. 51, 6804–6845 (2015a)

    Google Scholar 

  • Molnar, I.L., Gerhard, J.I., Willson, C.S., O’Carroll, D.M.: The impact of immobile zones on the transport and retention of nanoparticles in porous media. Water Resour. Res. 51, 8973–8994 (2015b)

    Google Scholar 

  • Mondal, P.K., Furbacher, P.D., Cui, Z., Krol, M.M., Sleep, B.E.: Transport of polymer stabilized nano-scale zero-valent iron in porous media. J. Contam. Hydrol. 212, 65 (2017)

    Google Scholar 

  • Mornet, S., Vasseur, S., Grasset, F., Duguet, E.: Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 14(14), 2161–2175 (2004)

    Google Scholar 

  • Mussler, M., Rafaï, S., Peyla, P., Wagner, C.: Effective viscosity of non-gravitactic Chlamydomonas Reinhardtii microswimmer suspensions. EPL 101, 54004 (2013)

    Google Scholar 

  • Myłyk, A., Meile, W., Brenn, G., Ekiel-Jezewska, M.L.: Break-up of suspension drops settling under gravity in a viscous fluid close to a vertical wall. Phys. Fluids 23(6), 1–15 (2011)

    Google Scholar 

  • Nel, A.E., Mädler, L., Velegol, D., Xia, T., Hoek, E.M., Somasundaran, P., Klaessig, F., Castranova, V., Thompson, M.: Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8(7), 543 (2009)

    Google Scholar 

  • Nelson, K.E., Ginn, T.R.: Colloid filtration theory and the Happel sphere-in-cell model revisited with direct numerical simulation of colloids. Langmuir 21(6), 2173–2184 (2005)

    Google Scholar 

  • Nelson, K.E., Ginn, T.R.: New collector efficiency equation for colloid filtration in both natural and engineered flow conditions. Water Resour. Res. 47, 17 (2011)

    Google Scholar 

  • Nelson, K.E., Massoudieh, A., Ginn, T.R.: E. Coli fate and transport in the Happel sphere-in-cell model. Adv. Water Resour. 30(67), 1492–1504 (2007)

    Google Scholar 

  • Netti, P.A., Hamberg, L.M., Babich, J.W., Kierstead, D., Graham, W., Hunter, G.J., Wolf, G.L., Fischman, A., Boucher, Y., Jain, R.K.: Enhancement of fluid filtration across tumor vessels: implication for delivery of macromolecules. Proc. Natl. Acad. Sci. 96(6), 3137–3142 (1999)

    Google Scholar 

  • Nichols, G., Byard, S., Bloxham, M.J., Botterill, J., Dawson, N.J., Dennis, A., Diart, V., North, N.C., Sherwood, J.D.: A review of the terms agglomerate and aggregate with a recommendation for nomenclature used in powder and particle characterization. J. Pharm. Sci. 91(10), 2103–2109 (2002)

    Google Scholar 

  • Ninham, B.W.: On progress in forces since the DLVO theory. Adv. Coll. Interface. Sci. 83(1–3), 1–17 (1999)

    Google Scholar 

  • Nitsche, J.M., Batchelor, G.K.: Break-up of a falling drop containing dispersed particles. J. Fluid Mech. 340, 161–175 (1997)

    Google Scholar 

  • Northrup, E.: A photographic study of vortex rings in liquids. Nature 88, 463–468 (1912)

    Google Scholar 

  • O’Connor, D.R.: Part One Report of the Walkerton Inquiry: The Events of May 2000 and Related Issues, O.M.o.t.A. General, Editor. Queen’s Printer for Ontario (2002)

  • Oberdörster, G., Stone, V., Donaldson, K.: Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1(1), 2–25 (2007)

    Google Scholar 

  • O’Carroll, D., Sleep, B., Krol, M., Boparai, H., Kocur, C.: Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv. Water Resour. 51, 104–122 (2013)

    Google Scholar 

  • Ohshima, H.: Electrokinetics of soft particles. Colloid Polym. Sci. 285(13), 1411–1421 (2007)

    Google Scholar 

  • Olivier, J., Vaxelaire, J., Vorobiev, E.: Modelling of cake filtration: an overview. Sep. Sci. Technol. 42(8), 1667–1700 (2007)

    Google Scholar 

  • Ouyang, Y., Shinde, D., Mansell, R.S., Harris, W.: Colloid-enhanced transport of chemicals in subsurface environments: a review. Crit. Rev. Environ. Sci. Technol. 26(2), 189–204 (1996)

    Google Scholar 

  • Palacci, J., Cottin-Bizonne, C., Ybert, C., Bocquet, L.: Sedimentation and effective temperature of active colloidal suspensions. Phys. Rev. Lett. 105, 088304 (2010)

    Google Scholar 

  • Pankhurst, Q.A., Connolly, J., Jones, S.K., Dobson, J.: Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36(13), R167 (2003)

    Google Scholar 

  • Pappenheimer, J.R.: Filtration, diffusion and molecular sieving through peripheral capillary membranes a contribution to the pore theory of capillary permeability. Am. J. Physiol. 167(1), 13–46 (1951)

    Google Scholar 

  • Paraskeva, C.A., Burganos, V.N., Payatakes, A.C.: three-dimensional trajectory analysis of particle deposition in constricted tubes. Chem. Eng. Commun. 108(1), 23–48 (1991)

    Google Scholar 

  • Paxton, W.F., Sen, A., Mallouk, T.E.: Motility of catalytic nanoparticles through self-generated forces. Chem. A Eur. J. 11(22), 6462–6470 (2005)

    Google Scholar 

  • Paxton, W.F., Sundararajan, S., Mallouk, T.E., Sen, A.: Chemical locomotion. Angew. Chem. Int. Ed. 45(33), 5420–5429 (2006)

    Google Scholar 

  • Payatakes, A.C., Gradoń, L.: Dendritic deposition of aerosol particles in fibrous media by inertial impaction and interception. Chem. Eng. Sci. 35(5), 1083–1096 (1980a)

    Google Scholar 

  • Payatakes, A.C., Gradoń, L.: Dendritic deposition of aerosols by convective Brownian diffusion for small, intermediate and high particle Knudsen numbers. AIChE J. 26(3), 443–454 (1980b)

    Google Scholar 

  • Payatakes, A.C., Tien, C., Turian, R.M.: Part II. Case study of the effect of the dimensionless groups and comparison with experimental data. AIChE J. 20(5), 900–905 (1974a)

    Google Scholar 

  • Payatakes, A.C., Tien, C., Turian, R.M.: Trajectory calculation of particle deposition in deep bed filtration: part I. Model formulation. AIChE J. 20(5), 889–900 (1974b)

    Google Scholar 

  • Payet, S., Boulaud, D., Madelaine, G., Renoux, A.: Penetration and pressure drop of a HEPA filter during loading with submicron liquid particles. J. Aerosol Sci. 23(7), 723–735 (1992)

    Google Scholar 

  • Pazmino, E.F., Trauscht, J., Dame, B., Johnson, W.P.: Power law size-distributed heterogeneity explains colloid retention on soda lime glass in the presence of energy barriers. Langmuir 30(19), 5412–5421 (2014)

    Google Scholar 

  • Pecora, R.: Dynamic light scattering measurement of nanometer particles in liquids. J. Nanopart. Res. 2(2), 123–131 (2000)

    Google Scholar 

  • Pensini, E., Yip, C.M., O’Carroll, D.M., Sleep, B.E.: Effect of water chemistry and aging on iron-mica interaction forces: implications for iron particle transport. Langmuir 28(28), 10453–10463 (2012a)

    Google Scholar 

  • Pensini, E., Sleep, B.E., Yip, C.M., O’Carroll, D.: Forces of interactions between bare and polymer-coated iron and silica: effect of ph, ionic strength, and humic acids. Environ. Sci. Technol. 46(24), 13401–13408 (2012b)

    Google Scholar 

  • Pensini, E., Yip, C.M., O’Carroll, D., Sleep, B.E.: Carboxymethyl cellulose binding to mineral substrates: characterization by atomic force microscopy–based Force spectroscopy and quartz-crystal microbalance with dissipation monitoring. J. Colloid Interface Sci. 402, 58–67 (2013a)

    Google Scholar 

  • Pensini, E., Yip, C.M., O’Carroll, D.M., Sleep, B.E.: Forces of interaction between fresh iron particles and iron oxide (magnetite): effect of water chemistry and polymer coatings. Colloids Surfaces A 433, 104–110 (2013b)

    Google Scholar 

  • Pensini, E., Yip, C.M., O’Carroll, D.M., Sleep, B.E.: Forces of interactions between iron and aluminum silicates: effect of water chemistry and polymer coatings. J. Colloid Interface Sci. 411, 8–15 (2013c)

    Google Scholar 

  • Perrault, S.D., Walkey, C., Jennings, T., Fischer, H.C., Chan, W.C.W.: Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 9(5), 1909–1915 (2009)

    Google Scholar 

  • Petosa, A.R., Jaisi, D.P., Quevedo, I.R., Elimelech, M., Tufenkji, N.: Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ. Sci. Technol. 44(17), 6532–6549 (2010)

    Google Scholar 

  • Phenrat, T., Saleh, N., Sirk, K., Tilton, R.D., Lowry, G.V.: Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ. Sci. Technol. 41(1), 284–290 (2007)

    Google Scholar 

  • Phenrat, T., Long, T.C., Lowry, G.V., Veronesi, B.: Partial oxidation (“aging”) and surface modification decrease the toxicity of nanosized zerovalent iron. Environ. Sci. Technol. 43(1), 195–200 (2009)

    Google Scholar 

  • Phenrat, T., Cihan, A., Kim, H.J., Mital, M., Illangasekare, T., Lowry, G.V.: Transport and deposition of polymer-modified fe-0 nanoparticles in 2-D heterogeneous porous media: effects of particle concentration, Fe-0 content, and coatings. Environ. Sci. Technol. 44(23), 9086–9093 (2010)

    Google Scholar 

  • Philippe, A., Schaumann, G.E.: Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review. Environ. Sci. Technol. 48(16), 8946–8962 (2014)

    Google Scholar 

  • Phillips, R.J., Deen, W.M., Brady, J.F.: Hindered transport in fibrous membranes and gels: effect of solute size and fiber configuration. J. Colloid Interface Sci. 139(2), 363–373 (1990)

    Google Scholar 

  • Pignatel, F., Nicolas, M., Guazzelli, É.: A falling cloud of particles at a small but finite Reynolds number. J. Fluid Mech. 671, 34–51 (2011)

    Google Scholar 

  • Quinn, J., Geiger, C., Clausen, C., Brooks, K., Coon, C., O’Hara, S., Krug, T., Major, D., Yoon, W.-S., Gavaskar, A., Holdsworth, T.: Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ. Sci. Technol. 39(5), 1309–1318 (2005)

    Google Scholar 

  • Rabah, M.A., Farghaly, F.E., Abd-El Motaleb, M.A.: Recovery of nickel, cobalt and some salts from spent Ni-MH batteries. Waste Manag 28(7), 1159–1167 (2008)

    Google Scholar 

  • Rackow, E.C., Fein, I.A., Leppo, J.: Colloid osmotic pressure as a prognostic indicator of pulmonary edema and mortality in the critically ill. Chest 72(6), 709–713 (1977)

    Google Scholar 

  • Rafaï, S., Jibuti, L., Peyla, P.: Effective viscosity of microswimmer suspensions. Phys. Rev. Lett. 104, 098102 (2010)

    Google Scholar 

  • Rajagopalan, R., Tien, C.: Trajectory analysis of deep-bed filtration with sphere-in-cell porous-media model. AIChE J. 22(3), 523–533 (1976)

    Google Scholar 

  • Redman, J.A., Walker, S.L., Elimelech, M.: Bacterial adhesion and transport in porous media: role of the secondary energy minimum. Environ. Sci. Technol. 38(6), 1777–1785 (2004)

    Google Scholar 

  • Reimus, P.W., Zavarin, M., Wang, Y.: Colloid-Facilitated Radionuclide Transport: Current State of Knowledge from a Nuclear Waste Repository Risk Assessment Perspective. Los Alamos National Laboratory (LANL) (2017)

  • Rhodes, M.J.: Introduction to Particle Technology. Wiley, Hoboken (2008)

    Google Scholar 

  • Rippy, M.A.: Meeting the criteria: linking biofilter design to fecal indicator bacteria removal. WIREs Water 2, 577–592 (2015)

    Google Scholar 

  • Rogers, W.B.: ART. XXXIII—On the formation of rotating rings by air and liquids. Am. J. Sci. Arts 26, 246–258 (1858)

    Google Scholar 

  • Rolhion, N., Chassaing, B.: When pathogenic bacteria meet the intestinal microbiota. Philos. Trans. R. Soc. B 371, 20150504 (2016)

    Google Scholar 

  • Rusconi, R., Guasto, J.S., Stocker, R.: Bacterial transport suppressed by fluid shear. Nature Phys. 10, 212–217 (2014)

    Google Scholar 

  • Ryan, J.N., Elimelech, M.: Colloid mobilization and transport in groundwater. Colloids Surf. A 107, 1–56 (1996)

    Google Scholar 

  • Ryan, J.N., Elimelech, M., Baeseman, J.L., Magelky, R.D.: Silica-coated titania and zirconia colloids for subsurface transport field experiments. Environ. Sci. Technol. 34(10), 2000–2005 (2000)

    Google Scholar 

  • Ryan, S.D., Haines, B.M., Berlyand, L., Ziebert, F., Aranson, I.S.: Viscosity of bacterial suspensions: hydrodynamic interactions and self-induced noise. Phys. Rev. E 83, 050904 (2011)

    Google Scholar 

  • Saintillan, D.: The dilute rheology of swimming suspensions: a simple kinetic model. Exp. Mech. 50, 1275 (2010)

    Google Scholar 

  • Saintillan, D.: Rheology of active fluids. Annu. Rev. Fluid Mech. 50, 563–592 (2018)

    Google Scholar 

  • Saintillan, D., Shelley, M.J.: Orientational order and instabilities in suspensions of selflocomoting rods. Phys. Rev. Lett. 99, 058102 (2007)

    Google Scholar 

  • Sakulchaicharoen, N., O’Carroll, D.M., Herrera, J.E.: Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles. J. Contam. Hydrol. 118(3–4), 117–127 (2010)

    Google Scholar 

  • Sartori, P., Chiarello, E., Jayaswal, G., Pierno, M., Mistura, G., Brun, P., Tiribocchi, A., Orlandini, E.: Wall accumulation of bacteria with different motility patterns. Phys. Rev. E 97, 022610 (2018)

    Google Scholar 

  • Schaflinger, U., Machu, G.: Interfacial phenomena in suspensions. Chemical Engineering Technology 22(7), 617–619 (1999)

    Google Scholar 

  • Schijven, J.F., Hassanizadeh, S.M.: Virus removal by soil passage at field scale and groundwater protection of sandy aquifers. Water Sci. Technol. 46(3), 123–129 (2002). https://doi.org/10.2166/wst.2002.0069

    Article  Google Scholar 

  • Schwarz-Linek, J., Arlt, J., Jepson, A., Dawson, A., Vissers, T., Miroli, D., Pilizota, T., Martinez, V.A., Poon, W.C.K.: Escherichia coli as a model active colloid: a practical introduction. Colloids Surf. B 137, 2–16 (2016)

    Google Scholar 

  • Sen, T.K.: Processes in pathogenic biocolloidal contaminants transport in saturated and unsaturated porous media: a review. Water Air Soil Pollut. 216(1–4), 239–256 (2011)

    Google Scholar 

  • Sen, T.K., Khilar, K.C.: Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv. Coll. Interface. Sci. 119(2–3), 71–96 (2006)

    Google Scholar 

  • Shen, C., Huang, Y., Li, B., Jin, Y.: Predicting attachment efficiency of colloid deposition under unfavorable attachment conditions. Water Resour. Res. 46(11), W11526 (2010)

    Google Scholar 

  • Shin, S.M., Kim, N.H., Sohn, J.S., Yang, D.H., Kim, Y.H.: Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy 79(3), 172–181 (2005)

    Google Scholar 

  • Shipley, R.J., Chapman, S.J.: Multiscale modelling of fluid and drug transport in vascular tumours. Bull. Math. Biol. 72(6), 1464–1491 (2010)

    Google Scholar 

  • Sipos, O., Nagy, K., Di Leonardo, R., Galajda, P.: Hydrodynamic trapping of swimming bacteria by convex walls. Phys. Rev. Lett. 114, 258104 (2015)

    Google Scholar 

  • Sklodowska, K., Debski, P.R., Michalski, J.A., Korczyk, P.M., Dolata, M., Zajac, M., Jakiela, S.: Simultaneous measurement of viscosity and optical density of bacterial growth and death in a microdroplet. Micromachines 9, 251 (2018)

    Google Scholar 

  • Stevik, T.K., Aa, K., Ausland, G., Hanssen, J.F.: Removal of pathogenic bacteria in wastewater percolating through porous media: a review. Water Res. 38(6), 1355–1367 (2004)

    Google Scholar 

  • Streger, S.H., Vainberg, S., Dong, H., Hatzinger, P.B.: Enhancing Transport of Hydrogenophaga flava ENV735 for Bioaugmentation of Aquifers Contaminated with Methyl tert-Butyl Ether. Appl. Environ. Microbiol. 68(11), 5571 (2002)

    Google Scholar 

  • Stucke, B.: Zur Bildung von Wirbelringen. Z. Angew. Phys. 137, 376–379 (1954)

    Google Scholar 

  • Stylianopoulos, T., Poh, M.-Z., Insin, N., Bawendi, M.G., Fukumura, D., Munn, L.L., Jain, R.K.: Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys. J. 99(5), 1342–1349 (2010)

    Google Scholar 

  • Suarez, S.S., Pacey, A.A.: Sperm transport in the female reproductive tract. Hum Reprod Update 12(1), 23–37 (2006)

    Google Scholar 

  • Subramanian, G., Koch, D.L.: Evolution of clusters of sedimenting low-Reynolds-number particles with Oseen interactions. J. Fluid Mech. 603, 63–100 (2008)

    Google Scholar 

  • Svarovsky, L.: Hydrocyclones. In: Svarovsky, L. (ed.) Introduction to Solid-Liquid Separation, 4th edn, pp. 1–29. Butterworth-Heinemann, Oxford (2001)

    Google Scholar 

  • Takagi, D., Palacci, J., Braunschweig, A.B., Shelley, M.J., Zhang, J.: Hydrodynamic capture of microswimmers into sphere-bound orbits. Soft Matter 10, 1784–1789 (2014)

    Google Scholar 

  • Takatori, S.C., Brady, J.F.: Superfluid behavior of active suspensions from diffusive stretching. Phys. Rev. Lett. 118, 018003 (2017)

    Google Scholar 

  • Tamm, S.L.: Ciliary motion in paramecium. J. Cell Biol. 55, 250–255 (1972)

    Google Scholar 

  • Tarleton, S., Wakeman, R.: Solid/Liquid Separation: Principles of Industrial Filtration. Elsevier, Amsterdam (2005)

    Google Scholar 

  • Taylor, R., Cronin, A., Pedley, S., Barker, J., Atkinson, T.: The implications of groundwater velocity variations on microbial transport and wellhead protection—review of field evidence. FEMS Microbiol. Ecol. 49, 17–26 (2004)

    Google Scholar 

  • Thomas, D., Penicot, P., Contal, P., Leclerc, D., Vendel, J.: Clogging of fibrous filters by solid aerosol particles experimental and modelling study. Chem. Eng. Sci. 56(11), 3549–3561 (2001)

    Google Scholar 

  • Thomson, J.J., Newall, H.F.: On the formation of vortex rings by drops falling into liquids, and some allied phenomena. Proc. R. Soc. Lond. 39, 417–435 (1885)

    Google Scholar 

  • Thursby, E., Juge, N.: Introduction to the human gut microbiota. Biochem. J. 474, 1823–1836 (2017)

    Google Scholar 

  • Tomlinson, C.: LXV. On a new variety of the cohesion-figures of liquids. Lond. Edinb. Dublin Philos. Mag. J. Sci. 27(184), 425–432 (1864)

    Google Scholar 

  • Tong, M., Johnson, W.P.: Excess colloid retention in porous media as a function of colloid size, fluid velocity, and grain angularity. Environ. Sci. Technol. 40(24), 7725–7731 (2006)

    Google Scholar 

  • Tong, M., Li, X., Brow, C.N., Johnson, W.P.: Detachment-influenced transport of an adhesion-deficient bacterial strain within water-reactive porous media. Environ. Sci. Technol. 39(8), 2500–2508 (2005)

    Google Scholar 

  • Tong, M., Ma, H., Johnson, W.P.: Funneling of flow into grain-to-grain contacts drives colloid − colloid aggregation in the presence of an energy barrier. Environ. Sci. Technol. 42(8), 2826–2832 (2008)

    Google Scholar 

  • Torchilin, V.: Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev. 63(3), 131–135 (2011)

    Google Scholar 

  • Torkzaban, S., Bradford, S.A., Walker, S.L.: Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media. Langmuir 23(19), 9652–9660 (2007)

    Google Scholar 

  • Torkzaban, S., Tazehkand, S.S., Walker, S.L., Bradford, S.A.: Transport and fate of bacteria in porous media: coupled effects of chemical conditions and pore space geometry. Water Resour. Res. 44(4), W04403 (2008)

    Google Scholar 

  • Torkzaban, S., Bradford, S.A., Vanderzalm, J.L., Patterson, B.M., Harris, B., Prommer, H.: Colloid release and clogging in porous media: effects of solution ionic strength and flow velocity. J. Contam. Hydrol. 181, 161–171 (2015)

    Google Scholar 

  • Trauscht, J., Pazmino, E., Johnson, W.P.: Prediction of nanoparticle and colloid attachment on unfavorable mineral surfaces using representative discrete heterogeneity. Langmuir 31(34), 9366–9378 (2015)

    Google Scholar 

  • Tufenkji, N.: Modeling microbial transport in porous media: traditional approaches and recent developments. Adv. Water Resour. 30(6–7), 1455–1469 (2007)

    Google Scholar 

  • Tufenkji, N., Elimelech, M.: Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environ. Sci. Technol. 38(2), 529–536 (2004a)

    Google Scholar 

  • Tufenkji, N., Elimelech, M.: Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions. Langmuir 20(25), 10818–10828 (2004b)

    Google Scholar 

  • Tufenkji, N., Elimelech, M.: Spatial distributions of Cryptosporidium oocysts in porous media: evidence for dual mode deposition. Environ. Sci. Technol. 39(10), 3620–3629 (2005)

    Google Scholar 

  • Tufenkji, N., Miller, G.F., Ryan, J.N., Harvey, R.W., Elimelech, M.: Transport of Cryptosporidium oocysts in porous media: role of straining and physicochemical filtration. Environ. Sci. Technol. 38(22), 5932–5938 (2004)

    Google Scholar 

  • Vaidyanathan, R., Tien, C.H.I.: Hydrosol deposition in granular beds—an experimental study. Chem. Eng. Commun. 81(1), 123–144 (1989)

    Google Scholar 

  • Van der Waals, J.D.: Over de Continuiteit van den Gas-en Vloeistoftoestand, vol. 1. Sijthoff, Amsterdam (1873)

    Google Scholar 

  • Velimirovic, M., Tosco, T., Uyttebroek, M., Luna, M., Gastone, F., De Boer, C., Klaas, N., Sapion, H., Eisenmann, H., Larsson, P.-O., Braun, J., Sethi, R., Bastiaens, L.: Field assessment of guar gum stabilized microscale zerovalent iron particles for in situ remediation of 1,1,1-trichloroethane. J. Contam. Hydrol. 164, 88–99 (2014)

    Google Scholar 

  • Verma, S., Daverey, A., Sharma, A.: Slow sand filtration for water and wastewater treatment—a review. Environ. Technol. Rev. 6(1), 47–58 (2017)

    Google Scholar 

  • Vogel, T.M.: Bioaugmentation as a soil bioremediation approach. Curr. Opin. Biotechnol. 7(3), 311–316 (1996)

    Google Scholar 

  • Wadhams, G.H., Armitage, J.P.: Making sense of it all: bacterial chemotaxis. Nat. Rev. Mol. Cell Biol. 5, 1024 (2004)

    Google Scholar 

  • Wallender, E.K., Ailes, E.C., Yoder, J.S., Roberts, V.A., Brunkard, J.M.: Contributing factors to disease outbreaks associated with untreated groundwater. Groundwater 52(6), 886–897 (2014)

    Google Scholar 

  • Wang, C.-S.: Electrostatic forces in fibrous filters—a review. Powder Technol. 118(1), 166–170 (2001)

    Google Scholar 

  • Wang, C.-B., Zhang, W.-X.: Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 31(7), 2154–2156 (1997)

    Google Scholar 

  • Wang, Y., Hernandez, R.M., Bartlett, D.J., Bingham, J.M., Kline, T.R., Sen, A., Mallouk, T.E.: Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22, 10451–10456 (2006)

    Google Scholar 

  • Wang, D., Ge, L., He, J., Zhang, W., Jaisi, D.P., Zhou, D.: Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol. J. Contam. Hydrol. 164, 35–48 (2014)

    Google Scholar 

  • Wang, W., Duan, W., Ahmed, S., Sen, A., Mallouk, T.E.: From one to many: dynamic assembly and collective behavior of self-propelled colloidal motors. Acc. Chem. Res. 48(7), 1938–1946 (2015)

    Google Scholar 

  • Weil, M.H., Henning, R.J., Puri, V.K.: Colloid oncotic pressure: clinical significance. Crit. Care Med. 7(3), 113–116 (1979)

    Google Scholar 

  • Wenning, L.A., Murphy, R.M.: Coupled cellular trafficking and diffusional limitations in delivery of immunotoxins to multicell tumor spheroids. Biotechnol. Bioeng. 62(5), 562–575 (1999)

    Google Scholar 

  • Wheat, P.M., Marine, N.A., Moran, J.L., Posner, J.D.: Rapid fabrication of bimetallic spherical motors. Langmuir 26, 13052–13055 (2010)

    Google Scholar 

  • Wilhelm, C., Gazeau, F., Roger, J., Pons, J.N., Bacri, J.C.: Interaction of anionic superparamagnetic nanoparticles with cells: kinetic analyses of membrane adsorption and subsequent internalization. Langmuir 18(21), 8148–8155 (2002)

    Google Scholar 

  • Wilhelm, S., Tavares, A.J., Dai, Q., Ohta, S., Audet, J., Dvorak, H.F., Chan, W.C.W.: Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016)

    Google Scholar 

  • Yang, X., Lin, S., Wiesner, M.R.: Influence of natural organic matter on transport and retention of polymer coated silver nanoparticles in porous media. J. Hazard. Mater. 264, 161–168 (2014)

    Google Scholar 

  • Yao, K.-M., Habibian, M.T., O’Melia, C.R.: Water and waste water filtration. Concepts and applications. Environ. Sci. Technol. 5(11), 1105–1112 (1971)

    Google Scholar 

  • Yazi, S.R., Nosrati, R., Stevens, C.A., Vogel, D., Escobedo, C.: Migration of magnetotactic bacteria in porous media. Biomicrofluidics 12, 011101 (2018)

    Google Scholar 

  • Yeap, S.P., Ahmad, A.L., Ooi, B.S., Lim, J.: Electrosteric stabilization and its role in cooperative magnetophoresis of colloidal magnetic nanoparticles. Langmuir 28(42), 14878–14891 (2012)

    Google Scholar 

  • Zhang, W., Tang, X., Weisbrod, N., Guan, Z.: A review of colloid transport in fractured rocks. J. Mt. Sci. 9(6), 770–787 (2012)

    Google Scholar 

  • Zhao, W., Walker, S.L., Huang, Q., Cai, P.: Adhesion of bacterial pathogens to soil colloidal particles: influences of cell type, natural organic matter, and solution chemistry. Water Res. 53, 35–46 (2014)

    Google Scholar 

  • Zheng, J.-M., Pollack, G.H.: Long-range forces extending from polymer-gel surfaces. Phys. Rev. E 68(3), 031408 (2003)

    Google Scholar 

  • Zhong, H., Liu, G., Jiang, Y., Yang, J., Liu, Y., Yang, X., Liu, Z., Zeng, G.: Transport of bacteria in porous media and its enhancement by surfactants for bioaugmentation: a review. Biotechnol. Adv. 35(4), 490–504 (2017)

    Google Scholar 

  • Zia, R.N.: Active and passive microrheology: theory and simulation. Annu. Rev. Fluid Mech. 50, 371–405 (2018)

    Google Scholar 

  • Zöttl, A., Stark, H.: Emergent behavior in active colloids. J. Phys.: Condens. Matter 28, 253001 (2016)

    Google Scholar 

Download references

Acknowledgements

The work related to the experiments on swarm transport in fractured and porous media, simulation runs, and analysis was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, the Geosciences Research Program, under Award Number (DE-FG02-09ER16022). We also acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC). The authors would also like to acknowledge Dr. Sarah A. Charron for her helpful insights into the role of colloids in medical sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian L. Molnar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 353 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molnar, I.L., Pensini, E., Asad, M.A. et al. Colloid Transport in Porous Media: A Review of Classical Mechanisms and Emerging Topics. Transp Porous Med 130, 129–156 (2019). https://doi.org/10.1007/s11242-019-01270-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-019-01270-6

Keywords

Navigation