Skip to main content
Log in

Plasma-Assisted Dispersion of Bimetallic Ni–Co over Al2O3–ZrO2 for CO2 Reforming of Methane: Influence of Voltage on Catalytic Properties

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Glow discharge plasma with different voltages (700, 1000 and 1300 V) has been applied for treatment of Ni–Co/Al2O3–ZrO2 catalyst. Physicochemical properties of the catalysts were investigated by XRD, FESEM, BET and FTIR. Based on characterization results, there was an optimum amount of voltage (1000 V) in which the most uniform morphology, highest surface area and the smallest particle size was observed. On contrary of two other catalysts, 1000 V-treated Ni–Co/Al2O3–ZrO2 catalyst showed amorphous structure for NiO which led to improved dispersion of active phase and strong metal–support interactions. In this catalyst particle size distribution was narrow and average particle size was reported to be 21.2 nm. Dry reforming of methane to syngas using synthesized Ni–Co/Al2O3–ZrO2 nanocatalysts illustrated highest catalyst reactivity in the case of 1000 V-treated Ni–Co/Al2O3–ZrO2 nanocatalyst. This catalyst exhibited 99% feed conversion while 700 and 1300 V-treated catalysts showed 91 and 95% feed conversions at 850 °C, respectively. The H2/CO ratio over 700, 1000 and 1300 V treated catalysts was 0.83, 0.98 and 0.88, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cheng D-G (2008) Plasma decomposition and reduction in supported metal catalyst preparation. Catal Surv Asia 12(2):145–151

    Article  CAS  Google Scholar 

  2. Wang X, Zhou M, Jin X (2012) Application of glow discharge plasma for wastewater treatment. Electrochim Acta 83:501–512

    Article  CAS  Google Scholar 

  3. Nguyen Dinh MT, Giraudon JM, Vandenbroucke AM, Morent R, De Geyter N, Lamonier JF (2016) Manganese oxide octahedral molecular sieve K-OMS-2 as catalyst in post plasma-catalysis for trichloroethylene degradation in humid air. J Hazard Mat 314:88–94

    Article  CAS  Google Scholar 

  4. Khataee A, Gholami P, Vahid B (2016) Heterogeneous sono-Fenton-like process using nanostructured pyrite prepared by Ar glow discharge plasma for treatment of a textile dye. Ultrason Sonochem 29:213–225

    Article  CAS  Google Scholar 

  5. Chung W-C, Chang M-B (2016) Review of catalysis and plasma performance on dry reforming of CH4 and possible synergistic effects. Renew Sustain Energy Rev 62:13–31

    Article  CAS  Google Scholar 

  6. Li Z, Liu S, Chen Z (2009) Study on plasma discharge parameters in double-glow plasma surface alloying furnace. Vacuum 83 (5):801–804

    Article  CAS  Google Scholar 

  7. Zou J-J, Liu C-J, Zhang Y-P (2006) Control of the metalsSupport interface of NiO-loaded photocatalysts via cold plasma treatment. Langmuir 22(5):2334–2339

    Article  CAS  Google Scholar 

  8. Liu C, Li M, Wang J, Zhou X, Guo Q, Yan J, Li Y (2016) Plasma methods for preparing green catalysts: current status and perspective. Chin J Catal 37(3):340–348

    Article  CAS  Google Scholar 

  9. Khataee A, Rad TS, Vahid B, Khorram S (2016) Preparation of zeolite nanorods by corona discharge plasma for degradation of phenazopyridine by heterogeneous sono-Fenton-like process. Ultrason Sonochem 33:37–46

    Article  CAS  Google Scholar 

  10. Chen G, Georgieva V, Godfroid T, Snyders R, Delplancke-Ogletree M-P (2016) Plasma assisted catalytic decomposition of CO2. Appl Catal B 190:115–124

    Article  CAS  Google Scholar 

  11. Jahanmiri A, Rahimpour MR, Mohamadzadeh Shirazi M, Hooshmand N, Taghvaei H (2012) Naphtha cracking through a pulsed DBD plasma reactor: effect of applied voltage, pulse repetition frequency and electrode material. Chem Eng J 191:416–425

    Article  CAS  Google Scholar 

  12. Rahimpour MR, Jahanmiri A, Mohamadzadeh Shirazi M, Hooshmand N, Taghvaei H (2013) Combination of non-thermal plasma and heterogeneous catalysis for methane and hexadecane co-cracking: effect of voltage and catalyst configuration. Chem Eng J 219:245–253

    Article  CAS  Google Scholar 

  13. Lee DH, Kim T (2013) Plasma-catalyst hybrid methanol-steam reforming for hydrogen production. Int J Hydrogen Energy 38(14):6039–6043

    Article  CAS  Google Scholar 

  14. Pérez C, Pereiro R, Bordel N, Sanz-Medel A (1998) Effect of operation parameters on the sputtering and emission processes in radiofrequency glow discharge. A comparison with the direct-current mode. Spectrochim Acta Part B 53(11):1541–1551

    Article  Google Scholar 

  15. Bachiller-Baeza B, Mateos-Pedrero C, Soria MA, Guerrero-Ruiz A, Rodemerck U, Rodríguez-Ramos I (2013) Transient studies of low-temperature dry reforming of methane over Ni–CaO/ZrO2–La2O3. Appl Catal B 129:450–459

    Article  CAS  Google Scholar 

  16. Zeng S, Zhang L, Zhang X, Wang Y, Pan H, Su H (2012) Modification effect of natural mixed rare earths on Co/γ-Al2O3 catalysts for CH4/CO2 reforming to synthesis gas. Int J Hydrogen Energy 37(13):9994–10001

    Article  CAS  Google Scholar 

  17. Takahashi Y, Yamazaki T (2012) Behavior of high-pressure CH4/CO2 reforming reaction over mesoporous Pt/ZrO2 catalyst. Fuel 102:239–246

    Article  CAS  Google Scholar 

  18. Oyama ST, Hacarlioglu P, Gu Y, Lee D (2012) Dry reforming of methane has no future for hydrogen production: comparison with steam reforming at high pressure in standard and membrane reactors. Int J Hydrogen Energy 37(13):10444–10450

    Article  CAS  Google Scholar 

  19. Cheekatamarla PK, Finnerty CM (2006) Reforming catalysts for hydrogen generation in fuel cell applications. J Power Sources 160(1):490–499

    Article  CAS  Google Scholar 

  20. Wisniewski M, Boréave A, Gélin P (2005) Catalytic CO2 reforming of methane over Ir/Ce0.9Gd0.1O2–x. Catal Commun 6(9):596–600

    Article  CAS  Google Scholar 

  21. Abdollahifar M, Haghighi M, Babaluo AA, Khajeh Talkhoncheh S (2016) Sono-synthesis and characterization of bimetallic Ni–Co/Al2O3–MgO nanocatalyst: effects of metal content on catalytic properties and activity for hydrogen production via CO2 reforming of CH4. Ultrason Sonochem 31:173–183

    Article  CAS  Google Scholar 

  22. Yahyavi SR, Haghighi M, Shafiei S, Abdollahifar M, Rahmani F (2015) Ultrasound-assisted synthesis and physicochemical characterization of Ni–Co/Al2O3–MgO nanocatalysts enhanced by different amounts of MgO used for CH4/CO2 reforming. Energy Convers Manage 97:273–281

    Article  CAS  Google Scholar 

  23. Sharifi M, Haghighi M, Abdollahifar M (2015) Sono-dispersion of bimetallic Ni–Co over Zeolite Y used in conversion of greenhouse gases CH4/CO2 to high valued syngas. J Nat Gas Sci Eng 23:547–558

    Article  CAS  Google Scholar 

  24. Sajjadi SM, Haghighi M, Rahmani F (2015) Syngas production from CO2-Reforming of CH4 over Sol-Gel Synthesized Ni–Co/Al2O3–MgO–ZrO2 nanocatalyst: effect of ZrO2 precursor on catalyst properties and performance. Química Nova 38 (4):459–465

    CAS  Google Scholar 

  25. Sajjadi SM, Haghighi M, Rahmani F (2015) Sol-Gel synthesis of Ni–Co/Al2O3–MgO–ZrO2 nanocatalyst used in hydrogen production via reforming of CH4/CO2 greenhouse gases. J Nat Gas Sci Eng 22:9–21

    Article  CAS  Google Scholar 

  26. Wang S, Lu GQ, Millar GJ (1996) Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: state of the art. Energy Fuels 10(4):896–904

    Article  CAS  Google Scholar 

  27. Zhang J, Wang H, Dalai AK (2007) Development of stable bimetallic catalysts for carbon dioxide reforming of methane. J Catal 249(2):300–310

    Article  CAS  Google Scholar 

  28. Luisetto I, Tuti S, Di Bartolomeo E (2012) Co and Ni supported on CeO2 as selective bimetallic catalyst for dry reforming of methane. Int J Hydrogen Energy 37(21):15992–15999

    Article  CAS  Google Scholar 

  29. Sutthiumporn K, Kawi S (2011) Promotional effect of alkaline earth over Ni–La2O3 catalyst for CO2 reforming of CH4: role of surface oxygen species on H2 production and carbon suppression. Int J Hydrogen Energy 36(22):14435–14446

    Article  CAS  Google Scholar 

  30. Kang K-M, Kim H-W, Shim I-W, Kwak H-Y (2011) Catalytic test of supported Ni catalysts with core/shell structure for dry reforming of methane. Fuel Process Technol 92(6):1236–1243

    Article  CAS  Google Scholar 

  31. Huang J, Ma R, Huang T, Zhang A, Huang W (2011) Carbon dioxide reforming of methane over Ni/Mo/SBA-15-La2O3 catalyst: Its characterization and catalytic performance. J Nat Gas Chem 20(5):465–470

    Article  Google Scholar 

  32. Jin L, Li Y, Lin P, Hu H (2014) CO2 reforming of methane on Ni/γ-Al2O3 catalyst prepared by dielectric barrier discharge hydrogen plasma. Int J Hydrogen Energy 39(11):5756–5763

    Article  CAS  Google Scholar 

  33. Zhang X, Sun W-j, Chu W (2013) Effect of glow discharge plasma treatment on the performance of Ni/SiO2 catalyst in CO2 methanation. J Fuel Chem Technol 41(1):96–101

    Article  Google Scholar 

  34. Zheng X, Tan S, Dong L, Li S, Chen H (2014) LaNiO3@SiO2 core–shell nano-particles for the dry reforming of CH4 in the dielectric barrier discharge plasma. Int J Hydrogen Energy 39(22):11360–11367

    Article  CAS  Google Scholar 

  35. Rahemi N, Haghighi M, Babaluo AA, Allahyari S, Jafari MF (2014) Syngas production from reforming of greenhouse gases CH4/CO2 over Ni–Cu/Al2O3 nanocatalyst: impregnated vs. plasma-treated catalyst. Energy Convers Manage 84:50–59

    Article  CAS  Google Scholar 

  36. Rahemi N, Haghighi M, Babaluo AA, Jafari MF, Khorram S (2013) Non-thermal plasma assisted synthesis and physicochemical characterizations of Co and Cu doped Ni/Al2O3 nanocatalysts used for dry reforming of methane. Int J Hydrogen Energy 38(36):16048–16061

    Article  CAS  Google Scholar 

  37. Estifaee P, Haghighi M, Babaluo AA, Rahemi N, Jafari MF (2014) The beneficial use of non-thermal plasma in synthesis of Ni/Al2O3–MgO nanocatalyst used in hydrogen production from reforming of CH4/CO2 greenhouse gases. J Power Sources 257:364–373

    Article  CAS  Google Scholar 

  38. Rahemi N, Haghighi M, Babaluo AA, Jafari MF, Allahyari S (2013) The effect of the calcination temperature on the physicochemical properties and catalytic activity in the dry reforming of methane over a Ni–Co/Al2O3–ZrO2 nanocatalyst prepared by a hybrid impregnation-plasma method. Catal Sci Technol 3(12):3183–3191

    Article  CAS  Google Scholar 

  39. Kannan S, Narayanan A, Swamy CS (1996) Effect of composition on the physicochemical properties of nickel aluminium hydrotalcites. J Mater Sci 31(9):2353–2360

    Article  CAS  Google Scholar 

  40. Jamalzadeh Z, Haghighi M, Asgari N (2013) Synthesis, physicochemical characterizations and catalytic performance of Pd/carbon-zeolite and Pd/carbon-CeO2 nanocatalysts used for total oxidation of xylene at low temperatures. Front Environ Sci Eng 7 (3):365–381

    Article  CAS  Google Scholar 

  41. Khoshbin R, Haghighi M, Asgari N (2013) Direct synthesis of dimethyl ether on the admixed nanocatalysts of CuO–ZnO–Al2O3 and HNO3-modified clinoptilolite at high pressures: surface properties and catalytic performance. Mater Res Bull 48(2):767–777

    Article  CAS  Google Scholar 

  42. Aghamohammadi S, Haghighi M, Charghand M (2014) Methanol conversion to light olefins over nanostructured CeAPSO-34 catalyst: thermodynamic analysis of overall reactions and effect of template type on catalytic properties and performance. Mater Res Bull 50:462–475

    Article  CAS  Google Scholar 

  43. Allahyari S, Haghighi M, Ebadi A, Hosseinzadeh S (2014) Effect of irradiation power and time on ultrasound assisted co-precipitation of nanostructured CuO–ZnO–Al2O3 over HZSM-5 used for direct conversion of syngas to DME as a green fuel. Energy Convers Manage 83:212–222

    Article  CAS  Google Scholar 

  44. Allahyari S, Haghighi M, Ebadi A, Qavam Saeedi H (2014) Direct synthesis of dimethyl ether as a green fuel from syngas over nanostructured CuO–ZnO–Al2O3/HZSM-5 catalyst: influence of irradiation time on nanocatalyst properties and catalytic performance. J Power Sources 272:929–939

    Article  CAS  Google Scholar 

  45. Lacombe S, Geantet C, Mirodatos C (1995) Oxidative coupling of methane over lanthana catalysts: I. identification and role of specific active-sites. J Catal 151(2):439–452

    Article  CAS  Google Scholar 

  46. Yosefi L, Haghighi M, Allahyari S, Ashkriz S (2015) Effect of ultrasound irradiation and Ni-loading on properties and performance of CeO2-doped Ni/clinoptilolite nanocatalyst used in polluted air treatment. Process Safety Environ Prot 95:26–37

    Article  CAS  Google Scholar 

  47. Jeevanandam P, Koltypin Y, Gedanken A (2002) Preparation of nanosized nickel aluminate spinel by a sonochemical method. Mater Sci Eng 90(1–2):125–132

    Article  Google Scholar 

  48. Khoshbin R, Haghighi M (2013) A comparative study on the dispersion of CuO–ZnO–Al2O3 nanoparticles over HZSM-5 via Batch Co-precipitation, semibatch Co-precipitation and combined Co-precipitation-ultrasound methods. Chem Solid Mater 1(1):1–16

    Google Scholar 

  49. Abdollahifar M, Haghighi M, Babaluo AA (2014) Syngas production via dry reforming of methane over Ni/Al2O3–MgO nanocatalyst synthesized using ultrasound energy. J Ind Eng Chem 20(4):1845–1851

    Article  CAS  Google Scholar 

  50. Charghand M, Haghighi M, Aghamohammadi S (2014) The beneficial use of ultrasound in synthesis of nanostructured Ce-doped SAPO-34 used in methanol conversion to light olefins. Ultrason Sonochem 21(5):1827–1838

    Article  CAS  Google Scholar 

  51. Sajjadi SM, Haghighi M, Rahmani F (2014) Dry reforming of greenhouse gases CH4/CO2 over MgO-promoted Ni-Co/Al2O3-ZrO2 nanocatalyst: effect of MgO addition via sol-gel method on catalytic properties and hydrogen yield. J Sol-Gel Sci Technol 70(1):111–124

    Article  CAS  Google Scholar 

  52. Miyata S (1975) The syntheses of hydrotalcite-like compounds and their structures and physico-chemical properties I: the systems Mg2+–Al3+–NO3–, Mg2+–Al3+–Cl, Mg2+–Al3+–ClO4–, Ni2+–Al3+-Cl and Zn2+–Al3+–Cl. Clay Clay Miner 23:369–375

    Article  CAS  Google Scholar 

  53. Asgari N, Haghighi M, Shafiei S (2013) Synthesis and physicochemical characterization of nanostructured Pd/Ceria-Clinoptilolite catalyst used for P-Xylene abatement from waste gas streams at low temperature. J Chem Technol Biotechnol 88(4):690–703

    Article  CAS  Google Scholar 

  54. Khoshbin R, Haghighi M (2012) Urea–nitrate combustion synthesis and physicochemical characterization of CuO–ZnO–Al2O3 Nanoparticles over HZSM-5. Chin J Inorg Chem 28(9):1967–1978

    CAS  Google Scholar 

  55. Khoshbin R, Haghighi M (2014) Direct conversion of syngas to dimethyl ether as a green fuel over ultrasound-assisted synthesized CuO–ZnO–Al2O3/HZSM-5 nanocatalyst: effect of active phase ratio on physicochemical and catalytic properties at different process conditions. Catal Sci Technol 4(6):1779–1792

    Article  CAS  Google Scholar 

  56. Edwards JH, Maitra AM (1995) The chemistry of methane reforming with carbon dioxide and its current and potential applications. Fuel Process Technol 42(2–3):269–289

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge National Iranian Oil Refining and Distribution Company for the financial support of the research under Project No. of 87-1037 as well as Sahand University of Technology and Iran Nanotechnology Initiative Council for complementary financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Haghighi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahemi, N., Haghighi, M., Babaluo, A.A. et al. Plasma-Assisted Dispersion of Bimetallic Ni–Co over Al2O3–ZrO2 for CO2 Reforming of Methane: Influence of Voltage on Catalytic Properties. Top Catal 60, 843–854 (2017). https://doi.org/10.1007/s11244-017-0749-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0749-5

Keywords

Navigation